【数学】2018届一轮复习北师大版(理)算法与算法框图教案
1.算法的含义
算法是解决某类问题的一系列步骤或程序,只要按照这些步骤执行,都能使问题得到解决.
2.算法框图
在算法设计中,算法框图(也叫程序框图)可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:顺序结构、选择结构、循环结构.
3.三种基本逻辑结构
(1)顺序结构:按照步骤依次执行的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.
其结构形式为
(2)选择结构:需要进行判断,判断的结果决定后面的步骤,像这样的结构通常称作选择结构.
其结构形式为
(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为循环体.
其基本模式为
4.基本算法语句
任何一种程序设计语言中都包含五种基本的算法语句,它们分别是:输入语句、输出语句、赋值语句、条件语句和循环语句.
5.赋值语句
(1)一般形式:变量=表达式.
(2)作用:将表达式所代表的值赋给变量.
6.条件语句
(1)If—Then—Else语句的一般格式为:
If 条件 Then
语句1
Else
语句2
End If
(2)If—Then语句的一般格式是:
If 条件 Then
语句
End If
7.循环语句
(1)For语句的一般格式:
For 循环变量=初始值To终值
循环体
Next
(2)Do Loop语句的一般格式:
Do
循环体
Loop While条件为真
【思考辨析】
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)算法只能解决一个问题,不能重复使用.( × )
(2)算法框图中的图形符号可以由个人来确定.( × )
(3)输入框只能紧接开始框,输出框只能紧接结束框.( × )
(4)选择结构的出口有两个,但在执行时,只有一个出口是有效的.( √ )
(5)5=x是赋值语句.( × )
(6)输入语句可以同时给多个变量赋值.( √ )
1.已知一个算法:
(1)m=a.
(2)如果b
36,满足x2+y2≥36,故退出循环,输出x=,y=6,满足y=4x,故选C.
命题点2 完善算法框图
例4 (2016·衡水一模)如图给出的是计算+++…+的值的一个框图,其中菱形判断框内应填入的条件是( )
A.i>10 B.i<10
C.i>11 D.i<11
答案 A
解析 经过第一次循环得到s=,i=2,此时的i不满足判断框中的条件;
经过第二次循环得到s=+,i=3,此时的i不满足判断框中的条件;
经过第三次循环得到s=++,i=4,此时的i不满足判断框中的条件;
…;
经过第十次循环得到s=+++…+,i=11,此时的i满足判断框中的条件,执行输出,
故判断框中的条件是“i>10”.
命题点3 辨析算法框图的功能
例5 如果执行如图的算法框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则( )
A.A+B为a1,a2,…,aN的和
B.为a1,a2,…,aN的算术平均数
C.A和B分别是a1,a2,…,aN中最大的数和最小的数
D.A和B分别是a1,a2,…,aN中最小的数和最大的数
答案 C
解析 不妨令N=3,a1y2
C.y1cos成立,所以输出的y1=sin=;当输入的x为时,sin>cos不成立,所以输出的y2=cos=,所以y1-1;第二次循环:i=3,S=lg+lg=lg=-lg 5>-1;第三次循环:i=5,S=lg+lg=lg=-lg 7>-1;第四次循环:i=7,S=lg+lg=lg=-lg 9>-1;第五次循环:i=9,S=lg+lg=lg=-lg 11<-1.故输出i=9.
5.(2017·成都月考)定义某种运算,ab的运算原理如图所示.设S=1x,x∈[-2,2],则输出的S的最大值与最小值的差为( )
A.2 B.-1 C.4 D.3
答案 A
解析 由题意可得,S(x)=
∴S(x)max=2,S(x)min=0,
∴S(x)max-S(x)min=2.
6.(2015·课标全国Ⅱ)下边算法框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该算法框图,若输入的a,b分别为14,18,则输出的a等于( )
A.0 B.2
C.4 D.14
答案 B
解析 由题知,若输入a=14,b=18,则
第一次执行循环结构时,由a<b知,
a=14,b=b-a=18-14=4;
第二次执行循环结构时,由a>b知,
a=a-b=14-4=10,b=4;
第三次执行循环结构时,由a>b知,
a=a-b=10-4=6,b=4;
第四次执行循环结构时,由a>b知,
a=a-b=6-4=2,b=4;
第五次执行循环结构时,由a<b知,
a=2,b=b-a=4-2=2;
第六次执行循环结构时,由a=b知,输出a=2,结束.
故选B.
7.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个算法框图,则输出n的值为________.(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5)
答案 24
解析 n=6,S=×6×sin 60°=≈2.598<3.1,不满足条件,进入循环;
n=12,S=×12×sin 30°=3<3.1,不满足条件,继续循环;
n=24,S=×24×sin 15°≈12×0.258 8=3.105 6>3.1,满足条件,退出循环,输出n的值为24.
8.以下给出了一个程序,根据该程序回答:
输入x
If x<3 Then
y=2*x
Else
If x>3 Then
y=x*x-1
Else
y=2
End If
End If
输出y
(1)若输入4,则输出的结果是________;
(2)该程序的功能所表达的函数解析式为________.
答案 (1)15 (2)y=
解析 (1)x=4不满足x<3,∴y=x2-1=42-1=15.输出15.
(2)当x<3时,y=2x,当x>3时,y=x2-1;否则,
x=3,y=2.
∴y=
9.(2016·陕西西工大附中模拟)阅读如图所示算法框图,若输出的n=5,则满足条件的整数p共有________个.
答案 32
解析 模拟算法框图的运行过程,最后一次循环是
s=22+23+24=28,满足条件s8
解析 由题意可知输出结果为S=20,第1次循环,S=11,k=9,第2次循环,S=20,k=8,此时S满足输出结果,退出循环,所以判断框中的条件为“k>8”.
13.(2016·长沙模拟)运行如图所示的算法框图,若输出的y值的范围是[0,10],则输入的x值的范围是________.
答案 [-7,9]
解析 该程序的功能是计算分段函数的值,
y=
当x<-1时,由0≤3-x≤10可得-7≤x<-1;
当-1≤x≤1时,0≤x2≤10恒成立;
当x>1时,由0≤x+1≤10可得1,则判断框中可以填入的关于n的判断条件是________.(填序号)
①n≤2 015 ②n≤2 016
③n>2 015 ④n>2 016
答案 ②
解析 由题意得f′(x)=3ax2+x,由f′(-1)=0,
得a=,∴f′(x)=x2+x,
即g(x)===-.
由算法框图可知S=0+g(1)+g(2)+…+g(n)
=0+1-+-+…+-
=1-,
由1->,得n>2 015.
故可填入②.