高考数学专题复习:课时达标检测(三十三) 不等式的性质及一元二次不等式

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学专题复习:课时达标检测(三十三) 不等式的性质及一元二次不等式

课时达标检测(三十三) 不等式的性质及一元二次不等式 ‎[练基础小题——强化运算能力]‎ ‎1.若a>b>0,则下列不等式不成立的是(  )‎ A.< B.|a|>|b|‎ C.a+b<2 D.ab>0,∴<,且|a|>|b|,a+b>2,又f(x)=x是减函数,∴ay>z,x+y+z=0,则下列不等式成立的是(  )‎ A.xy>yz B.xz>yz C.xy>xz D.x|y|>z|y|‎ 解析:选C 因为x>y>z,x+y+z=0,所以3x>x+y+z=0,所以x>0,又y>z,所以xy>xz,故选C.‎ ‎4.不等式组的解集是(  )‎ A.(2,3)          B.∪(2,3)‎ C.∪(3,+∞) D.(-∞,1)∪(2,+∞)‎ 解析:选B ∵x2-4x+3<0,∴10,∴(x-2)(2x-3)>0,∴x<或x>2,∴原不等式组的解集为∪(2,3).‎ ‎5.已知关于x的不等式ax2+2x+c>0的解集为-,,则不等式-cx2+2x-a ‎>0的解集为________.‎ 解析:依题意知,∴解得a=-12,c=2,∴不等式-cx2+2x-a>0,即为-2x2+2x+12>0,即x2-x-6<0,解得-20得x>1,即B={x|x>1},所以A∩B={x|1b⇒ac2>bc2 B.>⇒a>b C.⇒> D.⇒> 解析:选C 当c=0时,ac2=0,bc2=0,故由a>b不能得到ac2>bc2,故A错误;当c<0时,>⇒a0⇔或故选项D错误,C正确.故选C.‎ ‎3.已知a>0,且a≠1,m=aa2+1,n=aa+1,则(  )‎ A.m≥n B.m>n C.m0,n>0,两式作商,得=a(a2+1)-(a+1)=aa(a-1),当a>1时,a(a-1)>0,所以aa(a-1)>a0=1,即m>n;当0a0=1,即m>n.综上,对任意的a>0,a≠1,都有m>n.‎ ‎4.若不等式组的解集不是空集,则实数a的取值范围是(  )‎ A.(-∞,-4] B.[-4,+∞)‎ C.[-4,3] D.[-4,3)‎ 解析:选B 不等式x2-2x-3≤0的解集为[-1,3],假设的解集为空集,则不等式x2+4x-(a+1)≤0的解集为集合{x|x<-1或x>3}的子集,因为函数f(x)=x2+4x-(a+1)的图象的对称轴方程为x=-2,所以必有f(-1)=-4-a>0,即a<-4,则使的解集不为空集的a的取值范围是a≥-4.‎ ‎5.若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是(  )‎ A. B. C.(1,+∞) D. 解析:选A 由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f(5)>0,解得a>-,故a的取值范围为.‎ ‎6.在R上定义运算:=ad-bc,若不等式≥1对任意实数x恒成立,则实数a的最大值为(  )‎ A.- B.- C. D. 解析:选D 由定义知,不等式≥1等价于x2-x-(a2-a-2)≥1,∴x2-x+1≥a2-a对任意实数x恒成立.∵x2-x+1=2+≥,∴a2-a≤,解得-≤a≤,则实数a的最大值为.‎ 二、填空题 ‎7.已知a,b,c∈R,有以下命题:‎ ‎①若<,则<;②若<,则ab,则a·‎2c>b·‎2c.‎ 其中正确的是__________(请把正确命题的序号都填上).‎ 解析:①若c≤0,则命题不成立.②由<得<0,于是a0知命题正确.‎ 答案:②③‎ ‎8.若00的解集是________.‎ 解析:原不等式为(x-a)<0,由00,则-x<0,则f(-x)=bx2+3x.因为f(x)为奇函数,所以f(-x)=-f(x),即bx2+3x=-x2-ax,可得a=-3,b=-1,所以f(x)=当x≥0时,由x2-3x<4解得0≤x<4;当x<0时,由-x2-3x<4解得x<0,所以不等式f(x)<4的解集为(-∞,4).‎ 答案:(-∞,4)‎ ‎10.(2016·西安一模)若关于x的二次不等式x2+mx+1≥0的解集为R,则实数m的取值范围是________.‎ 解析:不等式x2+mx+1≥0的解集为R,相当于二次函数y=x2+mx+1的最小值非负,即方程x2+mx+1=0最多有一个实根,故Δ=m2-4≤0,解得-2≤m≤2.‎ 答案:[-2,2]‎ 三、解答题 ‎11.已知f(x)=-3x2+a(6-a)x+6.‎ ‎(1)解关于a的不等式f(1)>0;‎ ‎(2)若不等式f(x)>b的解集为(-1,3),求实数a,b的值.‎ 解:(1)∵f(x)=-3x2+a(6-a)x+6,‎ ‎∴f(1)=-3+a(6-a)+6=-a2+‎6a+3>0,‎ 即a2-‎6a-3<0,解得3-2b的解集为(-1,3),‎ ‎∴方程-3x2+a(6-a)x+6-b=0的两根为-1,3,‎ ‎∴解得 故a的值为3+或3-,b的值为-3.‎ ‎12.已知函数f(x)=x2-2ax-1+a,a∈R.‎ ‎(1)若a=2,试求函数y=(x>0)的最小值;‎ ‎(2)对于任意的x∈[0,2],不等式f(x)≤a成立,试求a的取值范围.‎ 解:(1)依题意得y===x+-4.‎ 因为x>0,所以x+≥2.‎ 当且仅当x=时,‎ 即x=1时,等号成立.‎ 所以y≥-2.‎ 所以当x=1时,y=的最小值为-2.‎ ‎(2)因为f(x)-a=x2-2ax-1,‎ 所以要使得“对任意的x∈[0,2],不等式f(x)≤a成立”只要“x2-2ax-1≤0在[0,2]恒成立”.‎ 不妨设g(x)=x2-2ax-1,‎ 则只要g(x)≤0在[0,2]上恒成立即可.‎ 所以即 解得a≥.则a的取值范围为.‎
查看更多