- 2021-06-11 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习课时提能演练(七十一) 11_8
课时提能演练(七十一) (45分钟 100分) 一、选择题(每小题6分,共36分) 1.甲、乙两市都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天的条件下,乙市也为雨天的概率为( ) (A)0.6 (B)0.7 (C)0.8 (D)0.66 2.国庆节放假,甲去北京旅游的概率为,乙、丙去北京旅游的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) (A) (B) (C) (D) 3.在4次独立重复试验中,记事件A在1次试验中发生的概率为p(0<p<1), 随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则p的取值范围是( ) (A)[0.4,1) (B)(0,0.4] (C)(0,0.6] (D)[0.6,1) 4.(2011·湖北高考)如图,用 K、A1、A2三类不同的元件连 接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2 正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为( ) (A)0.960 (B)0.864 (C)0.720 (D)0.576 5.(2012·泉州模拟)设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是( ) (A) (B) (C) (D) 6.(易错题)甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以3∶1的比分获胜的概率为 ( ) (A) (B) (C) (D) 二、填空题(每小题6分,共18分) 7.在一段时间内,甲去某地的概率是,乙去此地的概率是,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是_______. 8.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个加工为一等品的概率为_______. 9.(预测题)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是_______(写出所有正确结论的编号). ①P(B)=; ②P(B|A1)=; ③事件B与事件A1相互独立; ④A1,A2,A3是两两互斥的事件; ⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关. 三、解答题(每小题15分,共30分) 10.(2011·四川高考)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时. (1)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (2)求甲、乙两人所付的租车费用之和小于6元的概率. 11.(2012·厦门模拟)某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积. (1)求学生小张选修甲的概率; (2)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率. 【探究创新】 (16分)甲、乙两人各射击一次,击中目标的概率分别是.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响. (1)求甲射击4次,至少有1次未击中目标的概率; (2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; (3)假设某人连续2次未击中目标,则中止其射击.问:乙恰好射击5次后,被中止射击的概率是多少? 答案解析 1.【解析】选A.甲市为雨天记为A,乙市为雨天记为B,则P(A)=0.2,P(B)=0.18,P(AB)=0.12, ∴. 2.【解题指南】先求出三人都不去北京旅游的概率,再根据对立事件求出至少有1人去北京旅游的概率. 【解析】选B.因甲、乙、丙去北京旅游的概率分别为,,.因此,他们不去北京旅游的概率分别为,,,所以,至少有1人去北京旅游的概率为P=. 3.【解析】选A.设事件A发生的概率为p,则,化简得2(1-p)≤3p,解得p≥0.4. 4.【解题指南】系统正常工作应保证K正常工作且A1、A2中至少有一个正常工作. 【解析】选B.由相互独立事件的概率公式得P=0.9×(1-0.2×0.2)=0.9×0.96=0.864. 5.【解题指南】根据相互独立事件的概率公式构造含有P(A)P(B)的方程组求解. 【解析】选D.由题意,P()·P()=,P()·P(B)=P(A)·P().设P(A)=x,P(B)=y, 则即 ∴x-1=,或x-1= (舍去),∴x=. 6.【解析】选A.前三局中甲获胜2局,第四局甲胜,则P=. 7.【解题指南】至少有1人去此地的对立事件是两个人都不去此地,求出两个人都不去此地的概率,再根据对立事件的概率得到结果. 【解析】由题意知,本题是一个相互独立事件同时发生的概率问题,两个人都不去此地的概率是(1-)×(1-)=,∴至少有一个人去此地的概率是1-=. 答案: 8.【解析】设事件A:甲实习生加工的零件为一等品; 事件B:乙实习生加工的零件为一等品,则P(A)=,P(B)=,所以这两个零件中恰有一个加工为一等品的概率为:=×(1-)+(1-)×=. 答案: 【方法技巧】已知两个事件A、B相互独立,它们的概率分别为P(A)、P(B),则有 事件 表示 概率 A、B同时发生 AB P(A)P(B) A、B都不发生 A、B恰有 一个发生 A、B中至少 有一个发生 A、B中至多 有一个发生 9.【解题指南】根据事件互斥、事件相互独立的概念,条件概率及把事件B的概率转化为P(B)=P(A1∩B)+P(A2∩B)+P(A3∩B)可辨析此题. 【解析】显然A1,A2,A3是两两互斥的事件, 有P(B|A1)=,P(B|A2)=,P(B|A3)=, 而P(B)=P(A1∩B)+P(A2∩B)+P(A3∩B)= P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=,且P(A1∩B)=,P(A1)P(B)=, 由P(A1∩B)≠P(A1)P(B), 可以判定②④正确,而①③⑤错误. 答案:②④ 10.【解题指南】(1)直接利用互斥事件的概率求解; (2)相互独立事件同时发生的概率问题,直接利用公式求解. 【解析】(1)分别记甲、乙在三小时以上且不超过四小时还车为事件A、B,则P(A)=, P(B)=. 即甲、乙在三小时以上且不超过四个小时还车的概率分别为,. (2)记甲、乙两人所付的租车费用之和小于6元为事件C,则P(C)=. 11.【解析】(1)设学生小张选修甲、乙、丙的概率分别为x、y、z, 依题意得 解得所以学生小张选修甲的概率为0.4. (2)若函数f(x)=x2+ξx为R上的偶函数,则ξ=0, 当ξ=0时,表示小张选修三门课程或三门课程都没选. ∴P(A)=P(ξ=0)=xyz+(1-x)(1-y)(1-z)=0.4×0.5×0.6+(1-0.4)×(1-0.5)×(1-0.6)=0.24, ∴事件A的概率为0.24. 【探究创新】 【解析】(1)记“甲连续射击4次至少有1次未击中目标”为事件A1.由题意,射击4次,相当于做4次独立重复试验. 故P(A1)=1-P()=, 所以甲连续射击4次至少有一次未击中目标的概率为. (2)记“甲射击4次,恰有2次击中目标”为事件A2,“乙射击4次,恰有3次击中目标”为事件B2,则 由于甲、乙射击相互独立,故 P(A2B2)=P(A2)·P(B2)=. 所以两人各射击4次,甲恰有2次击中目标且乙恰有3次击中目标的概率为. (3)记“乙恰好射击5次后被中止射击”为事件A3,“乙第i次射击未击中”为事件Di(i=1,2,3,4,5),则 A3=D5D4··(),且P(Di)=. 由于各事件相互独立,故 P(A3)=P(D5)·P(D4)·P()·P() =. 所以乙恰好射击5次后被中止射击的概率为.查看更多