- 2021-06-11 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届浙江新高考数学一轮复习高效演练分层突破:第九章 3 第3讲 圆的方程
[基础题组练] 1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程是( ) A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 解析:选A.设圆心为(0,a), 则=1, 解得a=2,故圆的方程为x2+(y-2)2=1.故选A. 2.方程|x|-1=所表示的曲线是( ) A.一个圆 B.两个圆 C.半个圆 D.两个半圆 解析:选D.由题意得即或 故原方程表示两个半圆. 3.(2020·金华十校联考)已知圆(x-2)2+(y+1)2=16的一条直径通过直线x-2y+3=0被圆所截弦的中点,则该直径所在的直线方程为( ) A.3x+y-5=0 B.x-2y=0 C.x-2y+4=0 D.2x+y-3=0 解析:选D.直线x-2y+3=0的斜率为,已知圆的圆心坐标为(2,-1),该直径所在直线的斜率为-2,所以该直径所在的直线方程为y+1=-2(x-2),即2x+y-3=0.故选D. 4.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程是( ) A.(x+1)2+y2=2 B.(x+1)2+y2=8 C.(x-1)2+y2=2 D.(x-1)2+y2=8 解析:选A.直线x-y+1=0与x轴的交点为即(-1,0). 根据题意,圆心为(-1,0). 因为圆与直线x+y+3=0相切,所以半径为圆心到切线的距离,即r=d==, 则圆的方程为(x+1)2+y2=2.故选A. 5.圆x2+y2-2x-2y+1=0上的点到直线x-y=2距离的最大值是( ) A.1+ B.2 C.1+ D.2+2 解析:选A.将圆的方程化为(x-1)2+(y-1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x-y=2的距离d==,故圆上的点到直线x-y=2距离的最大值为d+1=+1,选A. 6.(2020·杭州八校联考)圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,则+的最小值是( ) A.2 B. C.4 D. 解析:选D.由圆x2+y2+2x-6y+1=0知其标准方程为(x+1)2+(y-3)2=9,因为圆x2+y2+2x-6y+1=0关于直线ax-by+3=0(a>0,b>0)对称,所以该直线经过圆心(-1,3),即-a-3b+3=0,所以a+3b=3(a>0,b>0).所以+=(a+3b)=≥=,当且仅当=,即a=b时取等号,故选D. 7.圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3), 若M(m,)在圆C内,则m的取值范围为________. 解析:设圆心为C(a,0),由|CA|=|CB|得 (a+1)2+12=(a-1)2+32,所以a=2. 半径r=|CA|==. 故圆C的方程为(x-2)2+y2=10. 由题意知(m-2)2+()2<10,解得0查看更多