- 2021-06-10 发布 |
- 37.5 KB |
- 41页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届高考数学一轮复习第二章函数导数及其应用第12讲函数与方程课件
第12讲 函数与方程 课标要求 考情风向标 1.结合二次函数的图象,判断一元二 次方程根的存在性及根的个数,从而 了解函数的零点与方程根的联系. 2.根据具体函数的图象,能够借助计 算器用二分法求相应方程的近似解, 了解这种方法是求方程近似解的常 用方法 高考试题对该部分内容考 查的主要角度有两种:一 种是找函数零点个数;一 种是判断零点的范围.另 外备考中应该特别注意运 用导数来研究函数零点 1.函数的零点 (1)方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有_______ ⇔函数 y=f(x)有零点. 交点 < (2)如果函数 y=f(x)在区间[a,b]上的图象是连续不断的, 且有 f(a)·f(b)______0,那么函数 y=f(x)在区间(a,b)上有零点. 一般把这一结论称为零点存在性定理. 2.二分法 如果函数 y=f(x)在区间[m,n]上的图象是一条连续不断的 曲线,且 f(m)·f(n)<0,通过不断地把函数 y=f(x)的零点所在的 区间一分为二,使区间的两个端点逐步逼近零点,进而得到零 点近似值的方法叫做二分法. 1.如图 2-12-1 所示的是函数 f(x)的图象,它与 x 轴有 4 个不 同的公共点.给出下列四个区间,不能用二分法求出函数 f(x)零 点的区间是( )B 图 2-12-1 A.[-2.1,-1] C.[4.1,5] B.[1.9,2.3] D.[5,6.1] 的取值范围是( ) A.(1,3) B.(1,2) C.(0,3) D.(0,2) C x -1 0 1 2 3 f(x) -0.677 3.011 5.432 5.980 7.651 g(x) -0.530 3.451 4.890 5.241 6.892 3.(2017 年山东济南历城区统测)已知函数 f(x)与 g(x)的图象 在 R 上不间断,由表知函数 y=f(x)-g(x)在下列区间内一定有 )零点的是( A.(-1,0) C.(1,2) B.(0,1) D.(2,3) 解析:当 x=-1 时,f(-1)-g(-1)<0; 当 x=0 时,f(0)-g(0)<0; 当 x=1 时,f(1)-g(1)>0; 当 x=2 时,f(2)-g(2)>0; 当 x=3 时,f(3)-g(3)>0, 且函数 f(x)与 g(x)的图象在 R 上不间断, 由零点存在性定理可得,函数 y 在(0,1)内存在零点. 故选 B. 答案:B )的区间是( A.(0,1) C.(2,4) B.(1,2) D.(4,+∞) C 考点 1 函数零点的判定 例 1:(1)若a<b<c,则函数f(x)=(x-a)(x-b)+(x-b)(x- )c)+(x-c)(x-a)的两个零点分别位于区间( A.(a,b)和(b,c)内 B.(-∞,a)和(a,b)内 C.(b,c)和(c,+∞)内 D.(-∞,a)和(c,+∞)内 解析:f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c) =(c-b)(c-a)>0,f(a)f(b)<0,f(b)f(c)<0,∴两个零点分别位 于区间(a,b)和(b,c)内.故选 A. 答案:A 图 D13 答案:2 A.2 个 B.3 个 C.6 个 D.7 个 解析:方法一,由f 2(x)-5f(x)+4=0,得f(x)=1或4.若f(x) =1,当x≥0时,即5|x-1|-1=1,5|x-1|=2,解得x=1±log52;当 x<0时,即x2+4x+3=0,解得x=-1或-3.若f(x)=4,当x≥0 时,5|x-1|-1=4,|x-1|=1,解得x=0或2;当x<0时,即x2+4x =0,解得x=-4.故所求实根个数共有7个.故选D. 图 D14 方法二,由f 2(x)-5f(x)+4=0,得f(x)=1或4.作出f(x)的 图象如图 D14.由 f(x)的图象,可知 f(x)=1 有 4 个根,f(x)=4 有 3 个根.∴方程 f2(x) -5f(x)+4=0 有 7 个根.故选 D. 答案:D 【规律方法】判断函数y=f(x)在某个区间上是否存在零点, 常用以下三种方法:①当对应方程易解时,可通过解方程,看 方程是否有根落在给定区间上[如第(3)题];②利用函数零点的 存在性定理进行判断[如第(1)题];③通过函数图象,观察图象 在给定区间上的交点来判断[如第(2)题]. 考点 2 根据函数零点的存在情况,求参数的值 答案:C f(x)+x+a.若 g(x)存在 2 个零点,则实数 a 的取值范围是( ) A.[-1,0) C.[-1,+∞) B.[0,+∞) D.[1,+∞) 解析:g(x)=f(x)+x+a=0,得 f(x)=-x-a.若 g(x)存在 2 个零点,即直线 y=-x-a 与 f(x)的图象有 2 个交点.如图 D15, 实数 a 的取值范围是-a≤1,a≥-1. 图 D15 答案:C y≥0. 又 f(x)为奇函数,其图象关于原点对称,其周期为 4,如图 D16,要使 f(x)=g(x)在(0,9]上有 8 个实根,只需二者图象有 8 个交点即可. 图 D16 【规律方法】本题考点为参数的取值范围,侧重函数方程 的多个实根,难度较大.不能正确画出函数图象的交点而致误, 根据函数的周期性平移图象,找出两个函数图象相切或相交的 临界交点个数,从而确定参数的取值范围. 考点 3 二分法的应用 例 3:(1)若函数f(x)的零点与g(x)=4x+2x-2的零点之差 的绝对值不超过 0.25,则 f(x)可以是( ) 答案:A (2)已知函数 f(x)=ln x+2x-6. ①求证:函数 f(x)在其定义域上是增函数; ②求证:函数 f(x)有且只有一个零点; ③求这个零点所在的一个区间,使这个区间的长度不超 ①证明:函数 f(x)的定义域为(0,+∞), ②证明:∵f(2)=ln 2-2<0,f(3)=ln 3>0, ∴f(2)·f(3)<0.∴f(x)在(2,3)上至少有一个零点. 又由(1)知,f(x)在(0,+∞)上是增函数,因此 f(x)=0 至多 有一个根,从而函数 f(x)在(0,+∞)上有且只有一个零点. 设x1查看更多