- 2021-06-10 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届江苏一轮复习通用版12-2随机事件与概率、古典概型与几何概型作业
12.2 随机事件与概率、古典概型与几何概型 挖命题 【考情探究】 考点 内容解读 5年考情 预测热度 考题示例 考向 关联考点 随机事件与概率 求随机事件的概率 2015江苏,5 求随机事件的概率 ★★☆ 古典概型 求古典概型的概率 2018江苏,6 求古典概型的概率 ★★★ 2016江苏,7 求古典概型的概率 2014江苏,4 求古典概型的概率 几何概型 求几何概型的概率 2017江苏,5 求几何概型的概率 ★★☆ 分析解读 随机事件与概率、古典概型、几何概型是江苏高考的必考内容,题目难度不大,但对学生建模能力和运算能力要求比较高. 破考点 【考点集训】 考点一 随机事件与概率 1.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为: 162,153,148,154,165,168,172,171,173,150, 151,152,160,165,164,179,149,158,159,175. 根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5 cm~170.5 cm之间的概率约为 . 答案 25 2.(2019届江苏苏州实验中学检测)掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,若B表示B的对立事件,则一次试验中,事件A+B发生的概率为 . 答案 23 考点二 古典概型 1.(2018江苏徐州高三年级期中)从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是 . 答案 35 2.(2019届江苏启东中学检测)已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为 . 答案 23 考点三 几何概型 1.(2018江苏海安高三上学期第一次学业质量测试)已知一个边长为2的正方形及其外接圆.现随机地向圆内丢一粒豆子,则豆子落入正方形内的概率为 . 答案 2π 2.已知正棱锥S-ABC的底面边长为4,高为3,在正棱锥内任取一点P,使得VP-ABC<12VS-ABC的概率是 . 答案 78 炼技法 【方法集训】 方法一 求解古典概型问题的方法 1.(2018江苏启东高三调研测试)从1,2,3,4这四个数中一次随机地选两个数,则选中的两个数中至多有一个是奇数的概率为 . 答案 56 2.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是 . 答案 13 方法二 求解几何概型问题的方法 1.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为 . 答案 23 2.(2019届江苏教育学院附属中学检测)点P在边长为1的正方形ABCD内运动,则动点P到顶点A的距离PA<1的概率为 . 答案 π4 方法三 古典概型与统计综合问题的解法 移动公司在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方案如下:选择套餐1的客户可获得优惠200元,选择套餐2的客户可获得优惠500元,选择套餐3的客户可获得优惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率. (1)求从中任选1人获得优惠金额不低于300元的概率; (2)若采用分层抽样的方式从参加活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等优惠金额的概率. 解析 (1)设事件A为“从中任选1人获得优惠金额不低于300元”,则P(A)=150+10050+150+100=56. (2)设事件B为“从这6人中选出2人,他们获得相等优惠金额”.由题意可知按分层抽样方式选出的6人中,获得优惠200元的有1人,获得优惠500元的有3人,获得优惠300元的有2人,分别记为a1,b1,b2,b3,c1,c2,从中选出2人的所有基本事件如下:a1b1,a1b2,a1b3,a1c1,a1c2,b1b2,b1b3,b1c1,b1c2,b2b3,b2c1,b2c2,b3c1,b3c2,c1c2,共15个. 其中使得事件B成立的有b1b2,b1b3,b2b3,c1c2,共4个. 则P(B)=415. 过专题 【五年高考】 A组 自主命题·江苏卷题组 1.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 答案 310 2.(2017江苏,7,5分)记函数f(x)=6+x-x2的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是 . 答案 59 3.(2014江苏,4,5分,0.960)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 . 答案 13 4.(2015江苏,5,5分,0.942)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案 56 5.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案 56 B组 统一命题、省(区、市)卷题组 考点一 随机事件与概率 1.(2016天津改编,2,5分)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为 . 答案 56 2.(2016课标全国Ⅱ,18,12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 0 1 2 3 4 ≥5 保费 0.85a a 1.25a 1.5a 1.75a 2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 0 1 2 3 4 ≥5 频数 60 50 30 30 20 10 (1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值; (2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值; (3)求续保人本年度平均保费的估计值. 解析 (1)事件A发生当且仅当一年内出险次数小于2. 由所给数据知,一年内出险次数小于2的频率为60+50200=0.55, 故P(A)的估计值为0.55.(3分) (2)事件B发生当且仅当一年内出险次数大于1且小于4. 由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3, 故P(B)的估计值为0.3.(6分) (3)由所给数据得 保费 0.85a a 1.25a 1.5a 1.75a 2a 频率 0.30 0.25 0.15 0.15 0.10 0.05 (10分) 调查的200名续保人的平均保费为 0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a. 因此,续保人本年度平均保费的估计值为1.192 5a.(12分) 评析本题考查了频率的求解方法,同时对考生的应用意识及数据处理能力进行了考查,属中档题. 考点二 古典概型 1.(2018课标全国Ⅲ文改编,5,5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 . 答案 0.4 2.(2018课标全国Ⅱ理改编,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 . 答案 115 3.(2017天津文改编,3,5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 . 答案 25 4.(2016课标全国Ⅰ改编,3,5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 . 答案 23 5.(2016课标全国Ⅲ改编,5,5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是 . 答案 115 6.(2014陕西改编,6,5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为 . 答案 25 7.(2018天津文,15,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作. ①试用所给字母列举出所有可能的抽取结果; ②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率. 解析 本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力. (1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人. (2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种. ②由(1),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种. 所以,事件M发生的概率P(M)=521. 易错警示 解决古典概型问题时,需注意以下几点: (1)忽视基本事件的等可能性导致错误; (2)列举基本事件考虑不全面导致错误; (3)在求基本事件总数和所求事件包含的基本事件数时,一个按有序,一个按无序处理导致错误. 8.(2015陕西,19,12分)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下: 日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴 日期 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 天气 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨 (1)在4月份任取一天,估计西安市在该天不下雨···的概率; (2)西安市某学校拟从4月份的一个晴天··开始举行连续2天的运动会,估计运动会期间不下雨···的概率. 解析 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1315. (2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78. 以频率估计概率,运动会期间不下雨的概率为78. 9.(2017山东文,16,12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游. (1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率; (2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率. 解析 本题考查古典概型. (1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15个. 所选两个国家都是亚洲国家的事件所包含的基本事件有{A1,A2},{A1,A3},{A2,A3},共3个, 则所求事件的概率为P=315=15. (2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个. 包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3},共2个, 则所求事件的概率P=29. 方法总结 求古典概型概率的一般步骤: 1.求出所有基本事件的个数n,常用的方法有列举法、列表法、画树状图法; 2.求出事件A所包含的基本事件的个数m; 3.代入公式P(A)=mn求解. 10.(2016山东,16,12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下: ①若xy≤3,则奖励玩具一个; ②若xy≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶. 假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由. 解析 用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应. 因为S中元素的个数是4×4=16, 所以基本事件总数n=16. (1)记“xy≤3”为事件A, 则事件A包含的基本事件数共5个, 即(1,1),(1,2),(1,3),(2,1),(3,1). 所以P(A)=516,即小亮获得玩具的概率为516. (2)记“xy≥8”为事件B,“3查看更多