- 2021-06-10 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019届二轮复习专题1
第二节 命题及其关系、充分条件与必要条件 最新考纲 1.能写出一个命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系. 2.理解必要条件、充分条件与充要条件的含义. 知识梳理 1.命题 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题. 2.四种命题及其相互关系 (1)四种命题间的相互关系 (2)四种命题的真假关系 ①两个命题互为逆否命题,它们具有相同的真假性. ②两个命题为互逆命题或互否命题时,它们的真假性没有关系. 3.充分条件、必要条件与充要条件的概念 若p⇒q,则p是q的充分条件,q是p的必要条件 p是q的充分不必要条件 p⇒q且qp p是q的必要不充分条件 pq且q⇒p p是q的充要条件 p⇔q p是q的既不充分也不必要条件 pq且qp 4. 集合与充要条件 设集合A={x|x满足条件p},B={x|x满足条件q},则有: (1)若A⊆B,则p是q的充分条件,若AB,则p是q的充分不必要条件. (2)若B⊆A,则p是q的必要条件,若BA,则p是q的必要不充分条件. (3)若A=B,则p是q的充要条件. 典型例题 考点一 四种命题的关系及其真假判断 【例1】 (1)命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为( ) A.“若x=4,则x2-3x-4=0”为真命题 B.“若x≠4,则x2-3x-4≠0”为真命题 C.“若x≠4,则x2-3x-4≠0”为假命题 D.“若x=4,则x2-3x-4=0”为假命题 【答案】C 【解析】根据逆否命题的定义可以排除A,D;由x2-3x-4=0,得x=4或-1,所以原命题为假命题,所以其逆否命题也是假命题. (2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( ) A.真、假、真 B.假、假、真 C.真、真、假 D.假、假、假 【答案】B 【解析】 由共轭复数的性质,|z1|=|z2|,∴原命题为真,因此其逆否命题为真;取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,∴其逆命题为假,故其否命题也为假. (3) [2017·郑州模拟]给出以下四个命题: ①“若x+y=0,则x,y互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若q≤-1,则x2+x+q=0有实根”的逆否命题; ④若ab是正整数,则a,b都是正整数. 其中真命题是________.(写出所有真命题的序号) 【答案】 ①③ 规律方法 1.写一个命题的其他三种命题时,需注意: (1)对于不是“若p,则q”形式的命题,需先改写; (2)若命题有大前提,写其他三种命题时需保留大前提. 2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可. 3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假. 【变式训练1】 (1)[2017·宁夏银川]命题“若x2+y2=0,x,y∈R,则x=y=0”的逆否命题是( ) A.若x≠y≠0,x,y∈R,则x2+y2=0 B.若x=y≠0,x,y∈R,则x2+y2≠0 C.若x≠0且y≠0,x,y∈R,则x2+y2≠0 D.若x≠0或y≠0,x,y∈R,则x2+y2≠0 【答案】D 【解析】 将原命题的条件和结论否定,并互换位置即可.由x=y=0知x=0且y=0,其否定是x≠0或y≠0. (2)已知:命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( ) A.否命题是“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”,是真命题 B.逆命题是“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”,是假命题 C.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”,是真命题 D.逆否命题是“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”,是真命题 【答案】D (3)[2018·唐山检测]给出下列四个命题: ①“若xy=1,则x,y互为倒数”的逆命题; ②“四边相等的四边形是正方形”的否命题; ③“若a>b,则a2>b2”的逆否命题; ④“若x≤-3,则x2-x-6>0”的否命题; 其中真命题是________.(写出所有真命题的序号) 【答案】①② 【解析】 ①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“若a2≤b2,则a≤b”,取a=0,b=-1,a2≤b2,但a>b,故是假命题;④“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,而x=4>-3不是不等式的解,故是假命题. 考点二 充分条件与必要条件的判定 【例2】(1)“x(x-1)=0”是“x=1”的________条件. 【答案】必要不充分条件. 【解析】x(x-1)=0⇒x=0或x=1;反之,由x=1可得x(x-1)=0.故“x(x-1)=0”是“x=1”的必要不充分条件. (2)[2015·安徽卷]设p:x<3,q:-1<x<3,则p是q成立的________条件. 【答案】必要不充分 【解析】因为p:x<3,q:-1<x<3,所以q⇒p,但pq,所以p是q成立的必要不充分条件. (3)[2014·浙江卷]设四边形ABCD的两条对角线分别为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的________条件. 【答案】充分不必要 【解析】若四边形ABCD为菱形,则AC⊥BD;反之,若AC⊥BD,则四边形ABCD不一定为菱形.故“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件. (4) [2016·四川高考]设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A 【解析】若x>1且y>1,则有x+y>2成立,所以p⇒q;反之由x+y>2不能得到x>1且y>1.所以p是q的充分不必要条件. (5)(2017·衡阳一模)“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【答案】B 规律方法 充要条件的三种判断方法 (1)定义法:根据p⇒q,q⇒p进行判断. (2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断. (3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的何种条件,即可转化为判断“x=1且y=1”是“xy=1”的何种条件. 【变式训练2】 (1)设x∈R,则“|x-2|<1”是“x2+x-2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A 【解析】 |x-2|<1⇔1查看更多