2021届浙江新高考数学一轮复习高效演练分层突破:第七章 2 第2讲 一元二次不等式及其解法

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2021届浙江新高考数学一轮复习高效演练分层突破:第七章 2 第2讲 一元二次不等式及其解法

‎[基础题组练]‎ ‎1.设集合A={x|-3≤2x-1≤3},集合B为函数y=lg(x-1)的定义域,则A∩B=(  )‎ A.(1,2)          B.[1,2]‎ C.[1,2) D.(1,2]‎ 解析:选D.A=[-1,2],B=(1,+∞),A∩B=(1,2].‎ ‎2.若不等式ax2+bx+2<0的解集为,则的值为(  )‎ A. B. C.- D.- 解析:选A.由题意得ax2+bx+2=0的两根为-与,所以-=-+=-,则=1-=1-=.‎ ‎3.(2020·浙江省名校协作体高三联考)已知函数f(x)=则不等式f(x)≥x2的解集为(  )‎ A.[-1,1] B.[-2,2]‎ C.[-2,1] D.[-1,2]‎ 解析:选A.法一:当x≤0时,x+2≥x2,‎ 所以-1≤x≤0;①‎ 当x>0时,-x+2≥x2,‎ 所以01时得1x(x-2)的解集是________.‎ 解析:不等式|x(x-2)|>x(x-2)的解集即x(x-2)<0的解集,解得00的解集是.‎ ‎(1)求实数a的值;‎ ‎(2)求不等式ax2-5x+a2-1>0的解集.‎ 解:(1)由题意知a<0,且方程ax2+5x-2=0的两个根为,2,代入解得a=-2.‎ ‎(2)由(1)知不等式为-2x2-5x+3>0,‎ 即2x2+5x-3<0,解得-30的解集为.‎ ‎12.已知不等式ax2+bx+c>0的解集为(1,t),记函数f(x)=ax2+(a-b)x-c.‎ ‎(1)求证:函数y=f(x)必有两个不同的零点;‎ ‎(2)若函数y=f(x)的两个零点分别为m,n求|m-n|的取值范围.‎ 解:(1)证明:由题意知a+b+c=0,且->1.‎ 所以a<0且>1,所以ac>0.‎ 对于函数f(x)=ax2+(a-b)x-c 有Δ=(a-b)2+4ac>0.‎ 所以函数y=f(x)必有两个不同零点.‎ ‎(2)|m-n|2=(m+n)2-4mn===+8+4.‎ 由不等式ax2+bx+c>0的解集为(1,t)可知,方程ax2+bx+c=0的两个解分别为1和t(t>1),由根与系数的关系知=t,‎ 所以|m-n|2=t2+8t+4,t∈(1,+∞).‎ 所以|m-n|>,‎ 所以|m-n|的取值范围为(,+∞).‎ ‎[综合题组练]‎ ‎1.(2020·金华市东阳二中高三调研)若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为(  )‎ A. B. C.(1,+∞) D.(-∞,-1)‎ 解析:选A.由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,‎ 所以方程必有一正根、一负根.‎ 于是不等式在区间[1,5]上有解的充要条件是f(5)>0,解得a>-,故a的取值范围为.‎ ‎2.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是(  )‎ A.(-1,0)‎ B.(2,+∞)‎ C.(-∞,-1)∪(2,+∞)‎ D.不能确定 解析:选C.由f(1-x)=f(1+x)知f(x)的图象关于直线x=1对称,即=1,解得a=2.‎ 又因为f(x)开口向下,‎ 所以当x∈[-1,1]时,f(x)为增函数,‎ 所以f(x)min=f(-1)=-1-2+b2-b+1=b2-b-2,‎ f(x)>0恒成立,即b2-b-2>0恒成立,‎ 解得b<-1或b>2.‎ ‎3.(2020·杭州模拟)若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,则a的取值范围是________.‎ 解析:原不等式即(x-a)(x-1)≤0,当a<1时,不等式的解集为[a,1],此时只要a≥-4即可,即-4≤a<1;当a=1时,不等式的解为x=1,此时符合要求;当a>1时,不等式的解集为[1,a],此时只要a≤3即可,即10的解集;‎ ‎(2)若a>0,且00,‎ 即a(x+1)(x-2)>0.‎ 当a>0时,不等式F(x)>0的解集为{x|x<-1,或x>2};‎ 当a<0时,不等式F(x)>0的解集为{x|-10,且00.‎ 所以f(x)-m<0,即f(x)1;‎ ‎(2)对任意的b∈(0,1),当x∈(1,2)时,f(x)>恒成立,求a的取值范围.‎ 解:(1)f(x)=>1⇔x2+1<|x+1|⇔或⇔0⇔|x+a|>b(x+)⇔x+a>b(x+)或x+a<-b(x+)⇔a>(b-1)x+或a<-[(b+1)x+]对任意x∈(1,2)恒成立.所以a≥2b-1或a≤-(b+2)对任意b∈(0,1)恒成立.所以a≥1或a≤-.‎
查看更多

相关文章

您可能关注的文档