【物理】2018届一轮复习教科版原子结构与原子核教案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】2018届一轮复习教科版原子结构与原子核教案

第2节原子结构与原子核 ‎(1)原子中绝大部分是空的,原子核很小。(√)‎ ‎(2)核式结构学说是卢瑟福在α粒子散射实验的基础上提出的。(√)‎ ‎(3)氢原子光谱是由一条一条亮线组成的。(√)‎ ‎(4)玻尔理论成功地解释了氢原子光谱,也成功地解释了氦原子光谱。(×)‎ ‎(5)按照玻尔理论,核外电子均匀分布在各个不连续的轨道上。(×)‎ ‎(6)人们认识原子具有复杂结构是从英国物理学家汤姆孙研究阴极射线发现电子开始的。(√)‎ ‎(7)人们认识原子核具有复杂结构是从卢瑟福发现质子开始的。(×)‎ ‎(8)如果某放射性元素的原子核有100个,经过一个半衰期后还剩50个。(×)‎ ‎(9)质能方程表明在一定条件下,质量可以转化为能量。(×)‎ 突破点(一) 原子的核式结构 ‎1.汤姆孙原子模型 ‎(1)电子的发现:1897年,英国物理学家汤姆孙通过对阴极射线的研究发现了电子。电子的发现证明了原子是可再分的。‎ ‎(2)汤姆孙原子模型:原子里面带正电荷的物质均匀分布在整个原子球体中,而带负电的电子镶嵌在球内。‎ ‎2.α粒子散射实验 ‎(1)α粒子散射实验装置 ‎(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但少数α粒子穿过金箔后发生了大角度偏转,极少数α粒子甚至被“撞了回来”。‎ ‎3.原子的核式结构模型 ‎(1)α粒子散射实验结果分析 ‎①核外电子不会使α粒子的速度发生明显改变。‎ ‎②汤姆孙模型不能解释α粒子的大角度散射。‎ ‎③绝大多数α粒子沿直线穿过金箔,说明原子中绝大部分是空的;少数α粒子发生较大角度偏转,反映了原子内部集中存在着对α粒子有斥力的正电荷;极少数α粒子甚至被“撞了回来”,反映了个别α粒子正对着质量比α粒子大得多的物体运动时,受到该物体很大的斥力作用。‎ ‎(2)原子的核式结构模型 在原子的中心有一个很小的核,叫原子核,原子的所有正电荷和几乎所有质量都集中在原子核里,带负电的电子在核外绕核旋转。‎ ‎(3)核式结构模型的局限性 卢瑟福的原子核式结构模型能够很好地解释α粒子散射实验现象,但不能解释原子光谱是特征光谱和原子的稳定性。‎ ‎[多角练通]‎ ‎1.(2015·上海高考)在α粒子散射实验中,电子对α粒子运动的影响可以忽略。这是因为与α粒子相比,电子的(  )‎ A.电量太小        B.速度太小 C.体积太小 D.质量太小 解析:选D 在α粒子散射实验中,由于电子的质量太小,电子的质量只有α粒子的 ‎,它对α粒子速度的大小和方向的影响就像灰尘对枪弹的影响,完全可以忽略。故D正确,A、B、C错误。‎ ‎2.(多选)关于卢瑟福研究α粒子轰击金箔的实验,下列说法中正确的是(  )‎ A.按照汤姆孙模型,α粒子轰击金箔时不可能发生大角度的偏转,因而卢瑟福否定了汤姆孙的“枣糕模型”,提出了原子的核式结构模型 B.绝大多数α粒子穿过金箔运动方向不变,说明原子所带正电荷是均匀分布的 C.α粒子轰击金箔实验现象说明原子的全部正电荷和几乎全部质量都集中在原子核里 D.卢瑟福利用经典力学计算出向各方向散射的α粒子的比例 解析:选ACD 卢瑟福根据α粒子散射实验,否定了汤姆孙的“枣糕模型”,提出了原子的核式结构模型,A正确;实验中绝大多数α粒子穿过金箔时运动方向不变,说明原子内部大部分是空的,所带正电荷集中在很小的空间,卢瑟福利用经典力学计算了向各个方向散射的α粒子的比例,B错误,C、D正确。‎ ‎3.如图是卢瑟福的α粒子散射实验装置,在一个小铅盒里放有少量的放射性元素钋,它发出的α粒子从铅盒的小孔射出,形成很细的一束射线,射到金箔上,最后打在荧光屏上产生闪烁的光点。下列说法正确的是(  )‎ A.该实验是卢瑟福建立原子核式结构模型的重要依据 B.该实验证实了汤姆孙原子模型的正确性 C.α粒子与原子中的电子碰撞会发生大角度偏转 D.绝大多数的α粒子发生大角度偏转 解析:选A 卢瑟福根据α粒子散射实验,提出了原子核式结构模型,选项A正确,卢瑟福提出了原子核式结构模型的假设,从而否定了汤姆孙原子模型的正确性,B错误;电子质量太小,对α粒子的影响不大,选项C错误;绝大多数α粒子穿过金箔后,几乎仍沿原方向前进,D错误。‎ 突破点(二) 原子能级跃迁规律 ‎1.对氢原子能级图的理解 ‎(1)能级图如图所示。‎ ‎(2)能级图中相关量意义的说明:‎ 相 关 量 意 义 能级图中的横线 表示氢原子可能的能量状态——定态 横线左端的数字“1,2,3…”‎ 表示量子数 横线右端的数字“-13.6,-3.4…”‎ 表示氢原子的能量 相邻横线间的距离 表示相邻的能量差,量子数越大相邻的能量差越小,距离越小 带箭头的竖线 表示原子由较高能级向较低能级跃迁,原子跃迁的条件为hν=Em-En ‎2.两类能级跃迁 ‎(1)自发跃迁:高能级→低能级,释放能量,发出光子。‎ 光子的频率ν==。‎ ‎(2)受激跃迁:低能级→高能级,吸收能量。‎ ‎①光照(吸收光子):光子的能量必须恰等于能级差hν=ΔE。‎ ‎②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E外≥ΔE。‎ ‎③大于电离能的光子被吸收,将原子电离。‎ ‎3.谱线条数的确定方法 ‎(1)一个氢原子跃迁发出可能的光谱线条数最多为(n-1)。‎ ‎(2)一群氢原子跃迁发出可能的光谱线条数的两种求解方法。‎ ‎①用数学中的组合知识求解:N=C=。‎ ‎②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加。‎ ‎[多角练通]‎ ‎1.(多选)(2017·长沙模拟)以下关于玻尔原子理论的说法正确的是(  )‎ A.电子绕原子核做圆周运动的轨道半径不是任意的 B.电子在绕原子核做圆周运动时,稳定地产生电磁辐射 C.电子从量子数为2的能级跃迁到量子数为3的能级时要辐射光子 D.不同频率的光照射处于基态的氢原子时,只有某些频率的光可以被氢原子吸收 解析:选AD 由玻尔原子理论知,氢原子的轨道是不连续的,故A正确;电子在绕原子核做圆周运动时,不会产生电磁辐射,只有跃迁时才会产生电磁辐射,故B错误;氢原子在不同的轨道上对应的能量En=E1,电子从量子数为2的能级跃迁到量子数为3的能级时要吸收光子,故C错误;由于氢原子发射的光子的能量:E=En-Em=E1-E1=hν,不同频率的光照射处于基态的氢原子时,只有某些频率的光可以被氢原子吸收,故D正确。‎ ‎2.1995年科学家“制成”了反氢原子,它是由一个反质子和一个围绕它运动的正电子组成,反质子和质子有相同的质量,带有等量异种电荷。反氢原子和氢原子有相同的能级分布,氢原子能级如图所示,则下列说法中正确的是(  )‎ A.反氢原子光谱与氢原子光谱不相同 B.基态反氢原子的电离能为13.6 eV C.基态反氢原子能吸收11 eV的光子而发生跃迁 D.大量处于n=4能级的反氢原子向低能级跃迁时,从n=2能级跃迁到基态辐射的光子的波长最短 解析:选B 反氢原子和氢原子有相同的能级分布,故反氢原子光谱与氢原子光谱相同,A错;基态反氢原子的电离能为13.6 eV,只有大于等于13.6 eV的能量的光子才可以使反氢原子电离,B对;基态反氢原子发生跃迁时,只能吸收能量等于两个能级的能量差的光子,C错;在反氢原子谱线中,‎ 从n=4能级跃迁到基态辐射的光子的能量最大,频率最大,波长最短,D错。‎ ‎3.(多选)(2017·淄博莱芜二模)氢原子的能级如图所示,现在处于n=4能级的大量氢原子向低能级跃迁,下列说法正确的是(  )‎ A.这些氢原子可能发出6种不同频率的光 B.已知钾的逸出功为2.22 eV,则氢原子从n=3能级跃迁到n=2能级释放的光子可以从金属钾的表面打出光电子 C.氢原子从n=2能级跃迁到n=1能级释放的光子能量最小 D.氢原子由n=4能级跃迁到n=3能级时,氢原子能量减小,电子动能增加 解析:选AD 大量的氢原子处于n=4的激发态,可能发出光子频率的种数n=C=6,故A正确;氢原子从n=3能级跃迁到n=2能级释放的光子能量为1.89‎ ‎ eV,小于钾的逸出功为2.22 eV,故不能产生光电效应,故B错误;由n=4能级跃迁到n=3能级产生的光子频率最小,故C错误;氢原子由n=4能级跃迁到n=3能级时,放出能量,故氢原子能量减小,同时电子向原子核靠近,库仑力做正功,故电子动能增加,故选项D正确。‎ 突破点(三) 原子核的衰变规律 ‎1.放射性元素 具有放射性的元素称为放射性元素,原子序数大于或等于83的元素,都能自发地放出射线,原子序数小于83的元素,有的也能放出射线,它们放射出来的射线共有α射线、β射线、γ射线三种。‎ ‎2.三种射线的比较 种类 α射线 β射线 γ射线 组成 高速氦核流 高速电子流 光子流(高频电磁波)‎ 带电荷量 ‎2e ‎-e ‎0‎ 质量 ‎4mp,mp=1.67×10-‎‎27 kg 静止质量为零 速度 ‎0.1c ‎0.99c c(光速)‎ 在电磁场中 偏转 与α射线反向偏转 不偏转 贯穿本领 最弱,用纸能挡住 较强,能穿透几毫米厚的铝板 最强,能穿透几厘米厚的铅板 对空气的电离作用 很强 较弱 很弱 ‎3.α衰变、β衰变的比较 衰变类型 α衰变 β衰变 衰变方程 X→Y+He X→Y+e 衰变实质 ‎2个质子和2个中子结合成一个整体射出 ‎1个中子转化为1个质子和1个电子 ‎2H+2n→He n→H+e 衰变规律 电荷数守恒、质量数守恒、动量守恒 ‎4.衰变次数的确定方法 方法一:确定衰变次数的方法是依据两个守恒规律,设放射性元素X经过n次α衰变和m次β衰变后,变成稳定的新元素Y,则表示该核反应的方程为X→Y+nHe+me。根据质量数守恒和电荷数守恒可列方程 A=A′+4n Z=Z′+2n-m 由以上两式联立解得n=,m=+Z′-Z 由此可见确定衰变次数可归结为求解一个二元一次方程组。‎ 方法二:因为β衰变对质量数无影响,可先由质量数的改变确定α衰变的次数,然后根据衰变规律确定β衰变的次数。‎ ‎5.对半衰期的理解 ‎(1)半衰期公式:N余=N原,m余=m原。‎ ‎(2)半衰期的物理意义:半衰期是表示放射性元素衰变快慢的物理量,同一放射性元素的衰变速率一定,不同的放射性元素半衰期不同,有的差别很大。‎ ‎(3)半衰期的适用条件:半衰期是一个统计规律,是对大量的原子核衰变规律的总结,对于一个特定的原子核,无法确定何时发生衰变。‎ ‎[多角练通]‎ ‎1.(2016·上海高考)研究放射性元素射线性质的实验装置如图所示。两块平行放置的金属板A、B分别与电源的两极a、b连接,放射源发出的射线从其上方小孔向外射出。则(  )‎ A.a为电源正极,到达A板的为α射线 B.a为电源正极,到达A板的为β射线 C.a为电源负极,到达A板的为α射线 D.a为电源负极,到达A板的为β射线 解析:选B 从题图可以看出,到达两极板的粒子做类平抛运动,到达A极板的粒子在初速度方向的位移小于到达B板的粒子在初速度方向的位移,粒子在初速度方向做匀速直线运动,则根据公式x=v0t=v0,两个粒子初速度v0相差不大,两极板间电压U相同,放射源与两极板的距离也相同,而电子的小得多,所以电子在初速度方向的位移小,故达到A极板的是β射线,A极板带正电,a为电源的正极,故选项B正确。‎ ‎2.(多选)(2017·南通模拟)钍Th具有放射性,它能放出一个新的粒子而变为镤Pa,同时伴随有γ射线产生,其方程为Th→Pa+X,钍的半衰期为24天。则下列说法中正确的是(  )‎ A.X为质子 B.X是钍核中的一个中子转化成一个质子时产生的 C.γ射线是镤原子核放出的 D.‎1 g钍Th经过120天后还剩0.312 ‎‎5 g 解析:‎ 选BC 根据电荷数和质量数守恒知,钍核衰变过程中放出了一个电子,即X为电子,故A错误;发生β衰变时释放的电子是由核内一个中子转化成一个质子同时产生的,故B正确;γ射线是镤原子核放出的,故C正确;钍的半衰期为24天,‎1 g钍Th经过120天即经过5个半衰期,故经过120天后还剩0.031 ‎25 g,故D错误。‎ ‎3.(多选)(2017·梅州一模)关于天然放射现象,以下叙述正确的是(  )‎ A.若使放射性物质的温度升高,其半衰期将变大 B.β衰变所释放的电子是原子核内的质子转变为中子时产生的 C.在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强 D.铀核(U)衰变为铅核(Pb)的过程中,要经过8次α衰变和6次β衰变 解析:选CD 半衰期的时间与元素的物理状态无关,若使某放射性物质的温度升高,其半衰期不变,故A错误;β衰变所释放的电子是原子核内的中子转化成质子时产生的,故B错误;在α、β、γ这三种射线中,γ射线的穿透能力最强,α射线的电离能力最强,故C正确;铀核(U)衰变为铅核(Pb)的过程中,每经过一次α衰变质子数少2,质量数少4;而每经过一次β衰变质子数增加1,质量数不变;由质量数和核电荷数守恒,可知要经过8次α衰变和6次β衰变,故D正确。‎ 突破点(四) 核反应方程与核能计算 ‎1.核反应的四种类型 类型 可控性 核反应方程典例 衰变 α衰变 自发 U→Th+He β衰变 自发 Th→Pa+e 人工转变 人工控制 ‎ 7N+He→1O+H ‎ ‎(卢瑟福发现质子)‎ He+Be→‎1‎C+n ‎(查德威克发现中子)‎ Al+He →P+n ‎(约里奥·居里夫妇发现人工放射性)‎ P→Si+e 重核裂变 比较容易进行人工控制 U+n→56Ba+Kr+3n U+n→Xe+Sr+10n 轻核聚变 很难控制 H+H→He+n ‎2.核反应方程式的书写 ‎(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础。如质子(H)、中子(n)、α粒子(He)、β粒子(e)、正电子(e)、氘核(H)、氚核(H)等。‎ ‎(2)掌握核反应方程遵守的规律,是正确书写核反应方程或判断某个核反应方程是否正确的依据,由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向。‎ ‎(3)核反应过程中质量数守恒,电荷数守恒。‎ ‎3.对质能方程的理解 ‎(1)一定的能量和一定的质量相联系,物体的总能量和它的质量成正比,即E=mc2。‎ 方程的含义:物体具有的能量与它的质量之间存在简单的正比关系,物体的能量增大,质量也增大;物体的能量减少,质量也减少。‎ ‎(2)核子在结合成原子核时出现质量亏损Δm,其能量也要相应减少,即ΔE=Δmc2。‎ ‎(3)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2。‎ ‎4.核能的计算方法 ‎(1)根据ΔE=Δmc2计算时,Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”。‎ ‎(2)根据ΔE=Δm×931.5 MeV计算时,Δm的单位是“u”,ΔE的单位是“MeV”。‎ ‎(3)根据核子比结合能来计算核能:‎ 原子核的结合能=核子比结合能×核子数。‎ ‎[典例] (2015·江苏高考)(1)核电站利用原子核链式反应放出的巨大能量进行发电,U是核电站常用的核燃料。U受一个中子轰击后裂变成Ba和Kr两部分,并产生________个中子。要使链式反应发生,裂变物质的体积要________(选填“大于”或“小于”)它的临界体积。‎ ‎(2)取质子的质量mp=1.672 6×10-‎27 kg,中子的质量mn=1.674 9×10-‎27 kg,α粒子的质量mα=6.646 7×10-‎27 kg,光速c=3.0×‎108 m/s。请计算α粒子的结合能。(计算结果保留两位有效数字)‎ ‎[解析] (1)核反应方程遵守质量数守恒和电荷数守恒,且该核反应方程为:U+n →Ba+Kr+3n,即产生3个中子。临界体积是发生链式反应的最小体积,要使链式反应发生,裂变物质的体积要大于它的临界体积。‎ ‎(2)组成α粒子的核子与α粒子的质量差 Δm=(2mp+2mn)-mα 结合能ΔE=Δmc2‎ 代入数据得ΔE=4.3×10-12 J。‎ ‎[答案] (1)3 大于 (2)4.3×10-12 J ‎[方法规律]‎ 核能求解的思路方法 ‎(1)应用质能方程解题的流程图:‎ →→ ‎(2)在动量守恒方程中,各质量都可用质量数表示。‎ ‎(3)核反应遵守动量守恒和能量守恒定律,因此可以结合动量守恒和能量守恒定律来计算核能。‎ ‎[集训冲关]‎ ‎1.(2016·江苏高考)贝可勒尔在120年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用。下列属于放射性衰变的是(  )‎ A.C→N+e B.U+n→I+Y+2n C.H+H→He+n D.He+Al→P+n 解析:选A 放射性元素自发地放出射线的现象叫天然放射现象。A选项为β衰变方程,B选项为重核裂变方程,C选项为轻核聚变方程,D选项为原子核的人工转变方程,故选A。‎ ‎2.一个U原子核在中子的轰击下发生一种可能的裂变反应,其裂变方程为U+n→X+Sr+2n,则下列叙述正确的是(  )‎ A.X原子核中含有86个中子 B.X原子核中含有141个核子 C.因为裂变时释放能量,根据E=mc2,所以裂变后的总质量数增加 D.因为裂变时释放能量,出现质量亏损,所以生成物的总质量数减少 解析:选A X原子核中的核子数为(235+1)-(94+2)=140个,B错误;中子数为140-(92-38)=86个,A正确;裂变时释放能量,出现质量亏损,但是其总质量数是不变的,C、D错误。‎ ‎3.(2017·天津六校高三联考)一个静止的铀核U(原子质量为232.037 2 u)放出一个α粒子(原子质量为4.002 6 u)后衰变成钍核Th(原子质量为228.028 7 u)。(已知:原子质量单位1 u=1.67×10-‎27 kg,1 u相当于931 MeV)‎ ‎(1)写出核衰变反应方程;‎ ‎(2)算出该核衰变反应中释放出的核能;‎ ‎(3)假设反应中释放出的核能全部转化为钍核和α粒子的动能,则钍核获得的动能有多大?‎ 解析:(1)U→Th+He。‎ ‎(2)质量亏损Δm=0.005 9 u ΔE=Δmc2=0.005 9×931 MeV≈5.49 MeV。‎ ‎(3)系统动量守恒,钍核和α粒子的动量大小相等,即  EkTh+Ekα=ΔE 所以钍核获得的动能EkTh=×ΔE=×ΔE≈0.09 MeV。‎ 答案:(1)U→Th+He (2)5.49 MeV (3)0.09 MeV 两类核衰变在磁场中的径迹 静止核在磁场中自发衰变,其轨迹为两相切圆,α衰变时两圆外切,β衰变时两圆内切,根据动量守恒m1v1=m2v2和r=知,半径小的为新核,半径大的为α粒子或β粒子,其特点对比如下表:‎ α衰变 X→Y+He 匀强磁场中轨迹 两圆外切,α粒子半径大 β衰变 X→Y+e 匀强磁场中轨迹 两圆内切,β粒子半径大 ‎ (一)相外切圆的径迹 ‎[典例1] 在匀强磁场中,一个原来静止的原子核,由于放出一个α粒子,结果得到一张两个相切圆的径迹照片(如图所示),今测得两个相切圆半径之比r1∶r2=1∶44。则:‎ ‎(1)图中哪一个圆是α粒子的径迹?(说明理由)‎ ‎(2)这个原子核原来所含的质子数是多少?‎ ‎[解析] (1)因为动量守恒,所以轨道半径与粒子的电荷量成反比,所以圆轨道2是α粒子的径迹,圆轨道1是新生核的径迹,两者电性相同,运动方向相反。‎ ‎(2)设衰变后新生核的电荷量为q1,α粒子的电荷量为q2=2e,它们的质量分别为m1和m2,衰变后的速度分别为v1和v2,所以原来原子核的电荷量q=q1+q2。‎ 根据轨道半径公式有 ==,‎ 又由于衰变过程中遵循动量守恒定律,则 m1v1=m2v2,‎ 以上三式联立解得q=90e。‎ 即这个原子核原来所含的质子数为90。‎ ‎[答案] (1)圆轨道2是α粒子的径迹,理由见解析 ‎(2)90‎ ‎(二)相内切圆的径迹 ‎[典例2] 在垂直于纸面的匀强磁场中,有一原来静止的原子核,该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图中a、b所示,由图可以判定(  )‎ A.该核发生的是α衰变 B.该核发生的是β衰变 C.磁场方向一定垂直纸面向里 D.磁场方向一定垂直纸面向外 ‎[解析] 本题考查对α粒子及β粒子的性质的了解,对动量守恒定律以及左手定则的应用能力。原来静止的核,放出粒子后,总动量守恒,所以粒子和反冲核的速度方向一定相反,根据图示,它们在同一磁场中是向同一侧偏转的,由左手定则可知它们必带异种电荷,故应为β衰变;由于不知它们的旋转方向,因而无法判定磁场是向里还是向外,即都有可能。‎ ‎[答案] B ‎[反思领悟]‎ 由以上两例解答过程可知,当静止的原子核在匀强磁场中发生衰变时,大圆轨道一定是带电粒子(α粒子或β粒子)的,小圆轨道一定是反冲核的。α衰变时两圆外切,β衰变时两圆内切。如果已知磁场方向,还可根据左手定则判断绕行方向是顺时针还是逆时针。‎ 对点训练:原子的核式结构 ‎1.(2016·上海高考)卢瑟福通过对α粒子散射实验结果的分析,提出了原子内部存在(  )‎ A.电子          B.中子 C.质子 D.原子核 解析:‎ 选D 卢瑟福在α粒子散射实验中观察到绝大多数α粒子穿过金箔后几乎不改变运动方向,只有极少数的α粒子发生了大角度的偏转,说明在原子的中央存在一个体积很小的带正电的物质,将其称为原子核。故选项D正确。‎ ‎2.(2015·安徽高考)如图所示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止。图中所标出的α粒子在各点处的加速度方向正确的是(  )‎ A.M点 B.N点 C.P点 D.Q点 解析:选C α粒子(氦原子核)和重金属原子核都带正电,互相排斥,加速度方向与α粒子所受斥力方向相同。带电粒子加速度方向沿相应点与重金属原子核连线指向曲线的凹侧,故只有选项C正确。‎ ‎3.(多选)(2016·天津高考)物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展。下列说法符合事实的是(  )‎ A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论 B.查德威克用α粒子轰击N获得反冲核O,发现了中子 C.贝克勒尔发现的天然放射性现象,说明原子核有复杂结构 D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型 解析:选AC 麦克斯韦曾提出光是电磁波,赫兹通过实验证实了麦克斯韦关于光的电磁理论,选项A正确;查德威克用α粒子轰击Be,获得反冲核‎6C,发现了中子,选项B错误;贝克勒尔发现了天然放射现象,说明原子核有复杂的结构,选项C正确;卢瑟福通过对α粒子散射实验的研究,提出了原子核式结构模型,选项D错误。‎ 对点训练:原子能级跃迁规律 ‎4.(2017·衡水枣强中学高三检测)原子从一个能级跃迁到一个较低的能级时,有可能不发射光子。例如在某种条件下,铬原子的n=2能级上的电子跃迁到n=1能级上时并不发射光子,而是将相应的能量转交给n=4能级上的电子,使之脱离原子,这一现象叫做俄歇效应,以这种方式脱离了原子的电子叫做俄歇电子,已知铬原子的能级公式可简化表示为En=-,式中n=1,2,3,…表示不同能级,A是正的已知常数,上述俄歇电子的动能是(  )‎ A.A B.A C.A D.A 解析:选A 由题意可知铬原子n=1能级能量为:E1=-A,n=2能级能量为:E2=-‎ ,从n=2能级跃迁到n=1能级释放的能量为:ΔE=E2-E1=,n=4能级能量为:E4=-,电离需要能量为:E=0-E4=,所以电子从n=4能级电离后的动能为:Ek=ΔE-E=-=,故B、C、D错误,A正确。‎ ‎5.(多选)(2017·唐山二模)19世纪初,爱因斯坦提出光子理论,使得光电效应现象得以完美解释,玻尔的氢原子模型也是在光子概念的启发下提出的。关于光电效应和氢原子模型,下列说法正确的是(  )‎ A.光电效应实验中,入射光足够强就可以有光电流 B.若某金属的逸出功为W0,该金属的截止频率为 C.保持入射光强度不变,增大入射光频率,金属在单位时间内逸出的光电子数将减小 D.一群处于第四能级的氢原子向基态跃迁时,将向外辐射六种不同频率的光子 解析:选BCD 发生光电效应的条件是入射光频率大于极限频率,并不是光足够强,就能发生光电效应,故A错误;金属的逸出功W0=hν,得截止频率:ν=,故B正确;一定强度的入射光照射某金属发生光电效应时,入射光的频率越高,单个光子的能量值越大,光子的个数越少,单位时间内逸出的光电子数就越少,故C正确;一群处于第四能级的氢原子向基态跃迁的过程中,根据C42=6知,将向外辐射六种不同频率的光子,故D正确。‎ ‎6.(多选)(2017·安徽师大附中二模)已知氢原子的基态能量为E1,n=2、3能级所对应的能量分别为E2和E3,大量处于第3 能级的氢原子向低能级跃迁放出若干频率的光子,依据玻尔理论,下列说法正确的是(  )‎ A.产生的光子的最大频率为 B.当氢原子从能级n=2跃迁到n=1时,对应的电子的轨道半径变小,能量也变小 C.若氢原子从能级n=2跃迁到n=1时放出的光子恰好能使某金属发生光电效应,则当氢原子从能级n=3跃迁到n=1时放出的光子照到该金属表面时,逸出的光电子的最大初动能为E3-E2‎ D.若要使处于能级n=3的氢原子电离,可以采用两种方法:一是用能量为-E3的电子撞击氢原子,二是用能量为-E3的光子照射氢原子 解析:选BC 大量处于能级n=3的氢原子向低能级跃迁能产生3种不同频率的光子,产生光子的最大频率为;当氢原子从能级n=2跃迁到n=1时,能量减小,电子离原子核更近,电子轨道半径变小;若氢原子从能级n=2跃迁到n=1时放出的光子恰好能使某金属发生光电效应,由光电效应方程可知,该金属的逸出功恰好等于E2-E1,则当氢原子从能级n=3跃迁到n=1时放出的光子照射该金属时,逸出光电子的最大初动能为E3-‎ E1-(E2-E1)=E3-E2;电子是有质量的,撞击氢原子是发生弹性碰撞,由于电子和氢原子质量不同,故电子不能把-E3的能量完全传递给氢原子,因此不能使氢原子完全电离,而光子的能量可以完全被氢原子吸收。综上所述,B、C正确。‎ 对点训练:原子核的衰变规律 ‎7.(多选)关于天然放射现象,下列说法中正确的是(  )‎ A.α、β、γ三种射线中,α射线的穿透能力最强 B.α、β、γ三种射线都是电磁波 C.α射线由高速氦原子核组成,β射线是高速电子流 D.γ射线是原子核受到激发后产生的 解析:选CD α、β、γ三种射线中,γ射线的穿透能力最强,A错;α射线是α粒子流,由高速氦原子核组成,β射线是高速电子流,γ射线是电磁波,B错,C对;γ射线是原子核受到激发后产生的,D对。‎ ‎8.(2016·上海高考)放射性元素A经过2次α衰变和1次β衰变后生成一新元素B,则元素B在元素周期表中的位置较元素A的位置向前移动了(  )‎ A.1位 B.2位 C.3位 D.4位 解析:选C α粒子是He,β粒子是-10e,因此发生一次α衰变电荷数减少2,发生一次β衰变电荷数增加1,据题意,电荷数变化为:-2×2+1=-3,所以新元素在元素周期表中的位置向前移动了3位。故选项C正确。‎ ‎9.(多选)(2015·山东高考)‎14C发生放射性衰变成为14N,半衰期约5 700年。已知植物存活期间,其体内‎14C与‎12C的比例不变;生命活动结束后,‎14C的比例持续减小。现通过测量得知,某古木样品中‎14C的比例正好是现代植物所制样品的二分之一。下列说法正确的是(  )‎ A.该古木的年代距今约5 700年 B.‎12C、‎13C、‎14C具有相同的中子数 C.‎14C衰变为14N的过程中放出β射线 D.增加样品测量环境的压强将加速‎14C的衰变 解析:选AC 古木样品中‎14C的比例是现代植物所制样品的二分之一,根据半衰期的定义知该古木的年代距今约5 700年,选项A正确;同位素具有相同的质子数,不同的中子数,选项B错误;‎14C的衰变方程为 ‎146C→ 147N+-10e,所以此衰变过程放出β射线,选项C正确;放射性元素的半衰期与核内部自身因素有关,与原子所处的化学状态和外部条件无关,选项D错误。‎ ‎10.一个静止的放射性同位素的原子核P衰变为Si,另一个静止的天然放射性元素的原子核Th衰变为 Pa,在同一磁场中,得到衰变后粒子的运动径迹1、2、3、4,如图所示,则这四条径迹依次是(  )‎ A.电子、Pa、Si、正电子  B.Pa、电子、正电子、Si C.Si、正电子、电子、Pa D.正电子、Si、Pa、电子 解析:选B P→Si+e(正电子),产生的两个粒子,都带正电,应是外切圆,由R=,电荷量大的半径小,故3是正电子,4是Si。Th→Pa+e(电子),产生的两个粒子,一个带正电,一个带负电,应是内切圆,由R=知,电荷量大的半径小,故1是Pa,2是电子,故B项正确。‎ 对点训练:核反应方程与核能计算 ‎11.(多选)(2017·枣庄二中高考模拟)科学家利用核反应获取氚,再利用氘和氚的核反应获得能量,核反应方程分别为:X+Y→He+H+4.9 MeV和H+H→He+X+17.6 MeV。下列表述正确的有(  )‎ A.X是中子 B.Y的质子数是3,中子数是6‎ C.两个核反应都没有出现质量亏损 D.氘和氚的核反应是核聚变反应 解析:选AD 根据核反应方程:H+H→He+X,X的质量数:m1=2+3-4=1,核电荷数:z1=1+1-2=0,所以X是中子,故A正确;根据核反应方程:X+Y→He+H,X是中子,所以Y的质量数:m2=4+3-1=6,核电荷数:z2=2+1-0=3,所以Y的质子数是3,中子数是3,故B错误;根据两个核反应方程可知,都有大量的能量释放出来,所以一定都有质量亏损,故C错误;氘和氚的核反应过程中是质量比较小的核生成质量比较大的新核,所以是核聚变反应,故D正确。‎ ‎12.(2017·唐山调研)在匀强磁场中,有一个原来静止的‎6C原子核,它放出的粒子与反冲核的径迹是两个相内切的圆,圆的直径之比为7∶1,那么碳14的衰变方程应为(  )‎ A.‎6C―→e+5B     B.‎6C―→He+4Be C.‎6C―→H+5B D.‎6C―→ 解析:选D 静止的放射性原子核发生了衰变放出粒子后,新核的速度与粒子速度方向相反,放出的粒子与新核所受的洛伦兹力方向相同,根据左手定则判断出粒子与新核的电性相反,根据r=,因粒子和新核的动量大小相等,可由半径之比7∶1确定电荷量之比为1‎ ‎∶7,即可根据电荷数守恒及质量数守恒得出核反应方程式为D。‎ ‎13.(2017·儋州二中月考)1919年,卢瑟福用α粒子轰击氮核发现质子。科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核。设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0,氧核的质量为m3,不考虑相对论效应。‎ ‎(1)写出α粒子轰击氮核的核反应方程;‎ ‎(2)α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?‎ ‎(3)求此过程中释放的核能。‎ 解析:(1)根据质量数和电荷数守恒可得α粒子轰击氮核方程为:‎ 7N+He→8O+H。‎ ‎(2)设复核的速度为v,由动量守恒定律得:‎ m1v0=(m1+m2)v 解得:v=。‎ ‎(3)核反应过程中的质量亏损:Δm=m1+m2-m0-m3‎ 反应过程中释放的核能:‎ ΔE=Δmc2=(m1+m2-m0-m3)·c2。‎ 答案:(1)7N+He→8O+H ‎(2) (3)(m1+m2-m0-m3)c2‎ ‎14.(2017·银川模拟)卢瑟福用α粒子轰击氮核时发现质子。发现质子的核反应方程为:N+He―→O+H。已知氮核质量为mN=14.007 53 u,氧核质量为mO=17.004 54 u,氦核质量为mHe=4.003 87 u,质子(氢核)质量为mp=1.008 15 u。(已知:1 uc2=931 MeV,结果保留2位有效数字)求:‎ ‎(1)这一核反应是吸收能量还是放出能量的反应?相应的能量变化为多少?‎ ‎(2)若入射氦核以v0=3×‎107 m/s的速度沿两核中心连线方向轰击静止氮核。反应生成的氧核和质子同方向运动,且速度大小之比为1∶50。求氧核的速度大小。‎ 解析:(1)由Δm=mN+mHe-mO-mp得:‎ Δm=-0.001 29 u。‎ 所以这一核反应是吸收能量的反应,‎ 吸收能量ΔE=|Δm|c2=0.001 29 uc2≈1.2 MeV。‎ ‎(2)由动量守恒定律可得:‎ mHev0=mOv氧+mpvp 又v氧∶vp=1∶50,‎ 可解得:v氧≈1.8×‎106 m/s。‎ 答案:(1)吸收能量 1.2 MeV (2)1.8×‎106 m/s ‎[真题集训·章末验收]   高考真题集中演练——把脉命题规律和趋势 ‎1.(多选)(2016·全国乙卷改编)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生。下列说法正确的是(  )‎ A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大 ‎ B.入射光的频率变高,饱和光电流变大 C.入射光的频率变高,光电子的最大初动能变大 D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生 解析:选AC 产生光电效应时,光的强度越大,单位时间内逸出的光电子数越多,饱和光电流越大,说法A正确。饱和光电流大小与入射光的频率无关,说法B错误。光电子的最大初动能随入射光频率的增加而增加,与入射光的强度无关,说法C正确。减小入射光的频率,如低于极限频率,则不能发生光电效应,没有光电流产生,说法D错误。‎ ‎2.(多选)(2016·全国丙卷改编)一静止的铝原子核Al俘获一速度为1.0×‎107 m/s的质子p后,变为处于激发态的硅原子核Si*。下列说法正确的是________。‎ A.核反应方程为p+Al→Si*‎ B.核反应过程中系统动量守恒 C.核反应过程中系统能量不守恒 D.核反应前后核子数相等,所以生成物的质量等于反应物的质量之和 解析:选AB 核反应过程中遵循质量数守恒和电荷数守恒,核反应方程为p+Al→Si*,A正确。核反应过程中遵从动量守恒和能量守恒,B正确,C错误。核反应中发生质量亏损,生成物的质量小于反应物的质量之和,D错误。‎ ‎3.(多选)(2015·全国卷Ⅱ改编)实物粒子和光都具有波粒二象性。下列事实中突出体现波动性的是(  )‎ A.电子束通过双缝实验装置后可以形成干涉图样 B.β射线在云室中穿过会留下清晰的径迹 C.人们利用慢中子衍射来研究晶体的结构 D.人们利用电子显微镜观测物质的微观结构 解析:选ACD 电子束具有波动性,通过双缝实验装置后可以形成干涉图样,选项A正确。β射线在云室中高速运动时,径迹又细又直,表现出粒子性,选项B错误。人们利用慢中子衍射来研究晶体的结构,体现出波动性,选项C正确。电子显微镜是利用电子束工作的,体现了波动性,选项D正确。‎ ‎4.(多选)(2014·全国卷Ⅰ改编)关于天然放射性,下列说法正确的是(  )‎ A.所有元素都可能发生衰变 B.放射性元素的半衰期与外界的温度无关 C.放射性元素与别的元素形成化合物时仍具有放射性 D.α、β和γ三种射线中,γ射线的穿透能力最强 解析:选BCD 并不是所有的元素都可能发生衰变,原子序数越大,越易发生,A错误;放射性元素的半衰期与元素本身内部结构有关,与外界的温度无关,B正确;放射性元素无论单质还是化合物都具有放射性, C正确;在α、β、γ射线中,γ射线的穿透能力最强,D正确。‎ ‎5.(多选)(2014·全国卷Ⅱ改编)在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。下列说法符合历史事实的是(  )‎ A.密立根通过油滴实验测出了基本电荷的数值 B.贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核 C.居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素 D.卢瑟福通过α粒子散射实验证实了在原子核内部存在质子 解析:选AC 密立根通过油滴实验测出了元电荷即基本电荷的数值,A项正确;贝克勒尔发现了天然放射现象,说明原子核具有复杂的结构,卢瑟福通过α粒子散射实验确定了原子的核式结构模型,B项错误;居里夫妇从沥青铀矿中分离出了钋和镭两种新元素,C项正确;卢瑟福用镭放射出的α粒子轰击氮的原子核,从中找出了新的粒子,通过测定其质量和电荷,确定该粒子为氢的原子核,证实了原子核内部存在质子,D项错误。‎ ‎6.(多选)(2013·全国卷Ⅱ改编)关于原子核的结合能,下列说法正确的是(  )‎ A.原子核的结合能等于使其完全分解成自由核子所需的最小能量 B.一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来重核的结合能 C. 铯原子核(133 55Cs)的结合能小于铅原子核(Pb)的结合能 D.比结合能越大,原子核越不稳定 解析:选ABC 本题考查原子核的结合能及其相关知识点,意在考查考生综合应用知识分析问题的能力。比结合能越大,原子核越稳定,选项D错误。‎ ‎7.(2012·全国卷)U经过m次α衰变和n次β衰变,变成Pb,则(  )‎ A.m=7,n=3      B.m=7,n=4‎ C.m=14,n=9 D.m=14,n=18‎ 解析:选B 原子核每发生一次α衰变,质量数减少4,核电荷数减少2;每发生一次β衰变,质量数不变,核电荷数增加1。比较两种原子核,质量数减少28,即发生了7次α衰变;核电荷数应减少14,而核电荷数减少10,说明发生了4次β衰变,B项正确。‎ ‎8.(2011·全国卷)已知氢原子的基态能量为E1,激发态能量 En=E1/n2,其中n=2,3,…。用h表示普朗克常量,c 表示真空中的光速。能使氢原子从第一激发态电离的光子的最大波长为(  )‎ A.- B.- C.- D.- 解析:选C 依题意可知第一激发态能量为E2=E1/22,要将其电离,需要的能量至少为ΔE=0-E2=hν,根据波长、频率与波速的关系c=νλ,联立解得最大波长λ=-,C对。‎ ‎9.(2010·全国卷Ⅰ)原子核U 经放射性衰变①变为原子核Th,继而经放射性衰变②变为原子核Pa,再经放射性衰变③变为原子核U。放射性衰变①、②和③依次为(  )‎ A.α衰变、β衰变和β衰变 B.β衰变、α衰变和β衰变 C.β衰变、β衰变和α衰变 D.α衰变、β衰变和α衰变 解析:选A 本题考查核反应特点、α衰变和β衰变特点,意在考查考生理解和识记α衰变和β衰变特点的能力,以及分析判断能力。根据核反应过程中的质量数守恒和电荷数守恒特点,U核与Th核比较可知,核反应的另一产物为He,所以衰变①为α衰变,B、C项排除;Pa核与U核比较可知,核反应的另一产物为e,所以衰变③为β衰变,A项正确。‎ ‎10.(2010·全国卷)原子核X与氘核H反应生成一个α粒子和一个质子,由此可知(  )‎ A.A=2,Z=1 B.A=2,Z=2‎ C.A=3,Z=3 D.A=3,Z=2‎ 解析:选D 本题考查核反应方程的书写,主要考查电荷数守恒和质量数守恒。根据这两点有方程A+2=4+1,Z+1=2+1,解得A=3,Z=2,D项对。‎
查看更多

相关文章

您可能关注的文档