专题06+机械能守恒定律+功能关系(命题猜想)-2017年高考物理命题猜想与仿真押题
www.ks5u.com
【考向解读】
1.机械能守恒定律的应用为每年高考的重点,分析近几年高考试题,命题规律有以下三点:
(1)判断某系统在某过程中机械能是否守恒.
(2)结合物体的典型运动进行考查,如平抛运动、圆周运动、自由落体运动.
(3)在综合问题的某一过程中遵守机械能守恒定律时进行考查.
2.功能关系的应用为每年高考的重点和热点,在每年的高考中都会涉及,分析近几年考题,命题规律有如下特点:
(1)考查做功与能量变化的对应关系.
(2)涉及滑动摩擦力做功与产生内能(热量)的考查.
3. 传送带是最重要的模型之一,近两年高考中虽没有出现,但解决该问题涉及的知识面较广,又能与平抛运动、圆周运动相综合,因此预计在2016年高考中出现的可能性很大,题型为选择题或计算题.
【命题热点突破一】机械能守恒定律的应用
例1. (2016·四川理综·1)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1900J,他克服阻力做功100J.韩晓鹏在此过程中( )
A.动能增加了1900J
B.动能增加了2000J
C.重力势能减小了1900J
D.重力势能减小了2000J
答案 C
【感悟提升】(1)机械能守恒定律的三种表达式
①守恒观点:Ek1+Ep1=Ek2+Ep2
②转化观点:ΔEp=-ΔEk
③转移观点:ΔEA增=ΔEB减
(2)机械能守恒定律解题的基本思路
①选取研究对象——物体系或物体.
②根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.
③恰当地选取参考平面,确定研究对象初末态时的机械能.
④灵活选取机械能守恒的表达式列机械能守恒定律方程.
⑤解方程,统一单位,进行运算,求出结果,进行检验.
【变式探究】 (多选)如图所示,物体A的质量为M,圆环B的质量为m,通过轻绳连接在一起,跨过光滑的定滑轮,圆环套在光滑的竖直杆上,设杆足够长.开始时连接圆环的绳处于水平,长度为l,现从静止释放圆环.不计定滑轮和空气的阻力,以下说法正确的是( )
A.当M=2m时,l越大,则圆环m下降的最大高度h越大
B.当M=2m时,l越大,则圆环m下降的最大高度h越小
C.当M=m时,且l确定,则圆环m下降过程中速度先增大后减小到零
D.当M=m时,且l确定,则圆环m下降过程中速度一直增大
【答案】AD
【命题热点突破二】功能关系的应用
例2、(2016·全国甲卷·25)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图5所示.物块P与AB间的动摩擦因数μ=0.5.用外力推动物块P,将弹簧压缩至长度l,然后放开,P
开始沿轨道运动,重力加速度大小为g.
图5
(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;
(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.
若P能沿圆轨道运动到D点,其到达D点时的向心力不能小于重力,即P此时的速度大小v应满足
-mg≥0 ④
设P滑到D点时的速度为vD,由机械能守恒定律得
mv=mv+mg·2l ⑤
联立③⑤式得vD= ⑥
vD满足④式要求,故P能运动到D点,并从D点以速度vD水平射出.设P落回到轨道AB所需的时间为t,由运动学公式得
2l=gt2 ⑦
P落回到AB上的位置与B点之间的距离为s=vDt ⑧
联立⑥⑦⑧式得
s=2l ⑨
(2)设P的质量为M,为使P能滑上圆轨道,它到达B点时的速度不能小于零.由①②式可知
5mgl>μMg·4l ⑩
要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C.由机械能守恒定律有
MvB′2≤Mgl ⑪
Ep=MvB′2+μMg·4l ⑫
联立①⑩⑪⑫式得
m≤M
t2
C.v1=v2,t1t2.
答案 A
4.(2014·上海单科,11,3分)静止在地面上的物体在竖直向上的恒 力作用下上升,在某一高度撤去恒力.不计空气阻力,在整个上升过程中,物体机械能随时间变化关系是( )
答案 C
5. (2015·江苏单科,9,4分) (多选)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终 在弹性限度内,重力加速度为g.则圆环( )
A.下滑过程中,加速度一直减小
B.下滑过程中,克服摩擦力做的功为mv2
C.在C处,弹簧的弹性势能为mv2-mgh
D.上滑经过B的速度大于下滑经过B的速度
解析 由题意知,圆环从A到C先加速后减速,到达B处的加速度减小为零,故加速度先减小后增大,故A错误;根据能量守恒,从A到C有mgh=Wf+Ep,从C到A有mv2+Ep=mgh+Wf,联立解得:Wf=mv2,Ep=mgh-mv2,所以B正确,C错误;根据能量守恒,从A到B有mgh1=mv+ΔEp1+Wf1, 从C到B有mv2+ΔEp2=mv+Wf2+mgh2,又有mv2+Ep=mgh+Wf,联 立可得vB2>vB1,所以D正确.
答案 BD
6.(2014·广东理综,16,4分)如图是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )
A.缓冲器的机械能守恒
B.摩擦力做功消耗机械能
C.垫板的动能全部转化为内能
D.弹簧的弹性势能全部转化为动能
7.(2014·福建理综,18,6分)如图,两根相同的轻质弹簧,沿足够 长的光滑斜面放置,下端固定在斜面底部挡板上,斜面固定不动.质量不同、形状相同的两物块分别置于两弹簧上端.现用外力作用在物块上,使两弹簧具有相同的压缩量;若撤去外力后,两物块由静止沿斜面向上弹出并离开弹簧,则从撤去外力到物块速度第一次减为零的过程,两物块( )
A.最大速度相同 B.最大加速度相同
C.上升的最大高度不同 D.重力势能的变化量不同
解析 下图为物块能向上弹出且离开弹簧,则物块在刚撤去外力时加速度最大,由牛顿第二定律得:kx-mgsin θ=ma,即a=-gsin θ,由于两物块k、x、θ均相同,m不同,则a 不同,B错误;当mgsin θ=kx0即x0=时,速度最大,如图,设两物块质量m1<m2,其平衡位置分别为O1、O2,初始位置为O,则从O至O2的过程中,由W弹-WG=Ek及题意知,W弹相同, WG1<WG2,故Ek1>Ek2,即v1>v2,而此时m2的速度v2已达最大,此后,m1的速度将继续增大直至最大,而m2的速度将减小,故一定是质量小的最大速度大,A错误;从开始运动至最高点,由Ep=mgh及题意知重力势能的变 化量ΔEp=mgh相同,m不同,h也不同,故C正确,D错误.
答案 C
8.(2015·福建理综,21,19分)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.
(1)若固定小车,求滑块运动过程中对小车的最大压力;
(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:
①滑块运动过程中,小车的最大速度大小vm;
②滑块从B到C运动过程中,小车的位移大小s.
(2)①滑块下滑到达B点时,小车速度最大.由机械能守恒
mgR=Mv+m(2vm)2⑤
解得vm=⑥
②设滑块运动到C点时,小车速度大小为vC,由功能关系
mgR-μmgL=Mv+m(2vC)2⑦
设滑块从B到C过程中,小车运动加速度大小为a,由牛顿第二定律
μmg=Ma⑧
由运动学规律
v-v=-2as⑨
解得s=L⑩
答案 (1)3mg (2)① ②L
9.(2015·北京理综,23,18分)如图所示,弹簧的一端固定,另一端连接一个物块,弹簧质量不计.物块(可视为质点)的质量为m,在水平桌面 上沿x轴运动,与桌面间的动摩擦因数为μ.以弹簧原长时物块的位置为坐标原点O,当弹簧的伸长量为x时,物块所受弹簧弹力大小为F=kx,k为常量.
(1)请画出F随x变化的示意图;并根据F-x图象求物块沿x轴从O点运动到 位置x的过程中弹力所做的功;
(2)物块由x1向右运动到x3,然后由x3返回到x2,在这个过程中,
a.求弹力所做的功,并据此求弹性势能的变化量;
b.求滑动摩擦力所做的功;并与弹力做功比较,说明为什么不存在与摩擦力 对应的“摩擦力势能”的概念.
解析 (1)F-x图象如图所示①
物块沿x轴从O点运动到位置x的过程中,弹力做负功,大小等于图线与x轴所围成的图形的面积,所以有
WT=-kx·x=-kx2②
弹力做功WT=kx-kx只与初、末状态的位置有关,与移动路径无关,所以我们可以定义一个由物块之间的相互作用力(弹力)和相对位置决定的能量——弹性势能.而摩擦力做功与x1、x2、x3有关,即与实际路径有关,所以不可以定义与摩擦力对应的“摩擦力势能”.
答案 见解析