- 2021-06-02 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
物理卷·2018届江西省宜春市樟树中学高二上学期第二次月考物理试卷(解析版)
2016-2017学年江西省宜春市樟树中学高二(上)第二次月考物理试卷 一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,1-8小题只有一个选项是正确的,9-12小题有多个选项是正确,全部选对得4分,对而不全得2分,有错或不选的不给分.) 1.一负电荷从电场中A点由静止释放,只受电场力作用,沿电场线运动到B点,它运动的v﹣t图象如图所示,则A、B两点所在区域的电场线分布情况可能是( ) A. B. C. D. 2.在医疗手术中,为防止麻醉剂乙醚爆炸,地砖要用导电材料制成,医生和护士要穿由导电材料制成的鞋子和外套,一切设备要良好接地,甚至病人身体也要良好接地,这样做是为了( ) A.除菌消毒 B.消除静电 C.利用静电 D.防止漏电 3.如图所示,一价氢离子和二价氦离子(不考虑二者间的相互作用),从静止开始经过同一加速电场加速,垂直打入偏转电场中,则它们( ) A.同时离开偏转电场,但出射点的位置不同 B.同时离开偏转电场,出射点的位置相同 C.先后离开偏转电场,但出射点的位置相同 D.先后离开偏转电场,且出射点的位置不同 4.如图所示,在光滑绝缘的水平面上,有一棱形ABCD,对角线焦点为O,在顶点B、D处各固定一个点电荷,若将一个带正电的小球从A点静止释放,小球将沿对角线AC作往返运动.则( ) A.B、D处固定的是等量的正电荷 B.B、D处固定的是等量的异种电荷 C.在A、C的连线上O点电势最低 D.运动小球在O处的机械能最小 5.如图所示的电路中,电流表A1和A2为相同的毫安表(内阻不能忽略),当电路两端接入某一恒定电压的电源时,A1的示数为5mA.A2的示数为3mA,现将A2改接在R2所在的支路上,如图中虚线所示,图中电表均不会被烧坏,则下列说法正确的是( ) A.通过R1的电流强度必减少 B.电流表A1示数必增大 C.通过R2的电流强大必增大 D.电流表A2示数必增大 6.如图所示,两块平行带电金属板,带正电的极板接地,两板间P点处固定着一个负电荷(电荷量很小).现让两板保持距离不变而水平错开一段距离,则( ) A.两板间电压变大,P点场强变大 B.两板间电压变小,P点场强变小 C.P点电势变大,负电荷的电势能变小 D.P点电势不变,负电荷的电势能变大 7.实验课上,老师在实验桌上摆放了晶体二极管、电阻、电容器各一只,性能均正常,要求某实验小组用多用电表对以上三元件加以区分.该小组的做法是:将多用电表的选择开关拨“R×100”挡,分别测它们的正负电阻加以区别:测甲元件时,R正=R反=0.5kΩ;测乙元件时,R正=0.5kΩ,R反=100kΩ;测丙元件时,开始指针偏转到0.5kΩ,接着读数逐渐增大,最后停在100kΩ上,则甲、乙、丙三个元件分别是( ) A.电容器、电阻、二极管 B.电阻、电容器、二极管 C.电阻、二极管、电容器 D.二极管、电阻、电容器 8.如图,电源的内阻不可忽略.已知定值电阻R1=10Ω,R2=8Ω.当电键S接位置1时,电流表的示数为0.20A.那么当电键S接位置2时,电流表的示数不可能是下列的哪些值( ) A.0.28A B.0.25A C.0.22A D.0.19A 9.如图所示,圆形区域竖直轴与水平轴分别为PQ和MN,O为圆心.空间存在水平方向的匀强电场.正点电荷以相同速率v沿各个方向从A点进入圆形区域,从圆周上不同点离开,其中从C点离开时动能最大.则以下判断正确的是( ) A.从B点离开圆形区域的带电微粒的动能最小 B.从P点离开圆形区域的带电微粒的动能最小 C.从N点离开圆形区域的带电微粒的速率为v D.到达M点的粒子电势能最大 10.某同学欲采用如图所示的电路完成相关实验.图中电流表A的量程为0.6A,内阻约0.1Ω;电压表V的量程为3V,内阻约6kΩ;G为小量程电流表;电源电动势约3V,内阻较小.下列实验电路中正确的是( ) A.测定一段电阻丝(约5Ω)的电阻 B.测定电池的电动势和内阻(约2.0Ω) C.描绘小灯泡(额定电压2.5V)的伏安特性曲线 D.多用电表欧姆档测二极管正向电阻 11.如图电路,C为电容器的电容,D为理想二极管(具有单向导通作用),电流表、电压表均为理想表.闭合开关S至电路稳定后,调节滑动变阻器滑片P向左移动一小段距离,结果发现电压表V1的示数改变量大小为△U1,电压表V2的示数改变量大小为△U2,电流表A的示数改变量大小为△I,则下列判断正确的有( ) A.的值变大 B.的值变大 C.的值不变,且始终等于电源内阻r D.滑片向左移动的过程中,电容器所带的电荷量要不断减少 12.如图所示,平行实线代表电场线,方向未知,带电量为1×10﹣2C的正电荷在电场中只受电场力作用.该电荷由A点运动到B点,动能损失了0.1J,若A点电势为10V,则( ) A.B点的电势为零 B.电场线方向向左 C.电荷运动的轨迹可能是图中曲线① D.电荷运动的轨迹可能是图中曲线② 二、实验题:(18分) 13.写出下面游标卡尺和螺旋测微器的读数 cm、 mm. 14.某同学为了测定一只电阻的阻值,采用了如下方法: 用多用电表粗测:多用电表电阻挡有4个倍率,分别为“×1k”、“×100”、“×10”、“×1”.该同学选择“×100”倍率,用正确的操作步骤测量时,发现指针偏转角度太大(指针位置如图虚线所示).为了较准确地进行测量,请你补充完整下列依次应该进行的主要操作步骤: a.换用倍率 的挡. b.两表笔短接,调节欧姆调零旋钮,使指针指在“0Ω”处. c.重新测量并读数,若这时刻度盘上的指针位置如图中实线所示,测量结果是 . 15.如图1所示,用伏安法测电源电动势和内阻的实验中,在电路中接一阻值为2Ω的电阻R0,通过改变滑动变阻器,得到几组电表的实验数据: U(V) 1.2 1.0 0.8 0.6 I(A) 0.10 0.17 0.23 0.30 (1)用作图法在图2中坐标系内作出U﹣I图线; (2)利用图线,测得电动势E= V,内阻r= Ω(答案保留两位有效数字). (3)某同学测另一串联电池组的输出功率P随外电阻R变化的曲线如图3所示.由所得图线可知,被测电池组电动势E= V,电池组的内阻r= Ω. 三、计算题(共34分.要求写出必要的文字说明、主要方程式和重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分.) 16.如图所示,在竖直放置的光滑半圆弧形绝缘细管的圆心O处放一点电荷,将质量为m、带电荷量为q的小球从圆弧管水平直径的端点A由静止释放,当小球沿细管下滑到最低点时,对细管的上壁的压力恰好与球重相同,求圆心处的电荷在圆弧管内产生的电场的场强大小. 17.如图所示,R为电阻箱,电压表为理想电压表.当电阻箱读数为R1=2Ω时,电压表读数为U1=4V;当电阻箱读数为R2=5Ω时,电压表读数为U2=5V.求: (1)电源的电动势E和内阻r; (2)当电阻箱R读数为多少时,电源的输出功率最大?最大值Pm为多少? 18.一辆以蓄电池为驱动能源的环保电动汽车,拥有三十多个座位,其电池每次充电仅需三至五个小时,蓄电量可让汽车一次性跑5.0×105m,汽车时速最高可达1.8×102km/h,汽车总质量为9.0×103kg.驱动电机直接接在蓄电池的两极,且蓄电池的内阻为r=0.20Ω.当该汽车在某城市快速水平公交路面上以v=90km/h的速度匀速行驶时,驱动电机的输入电流I=1.5×102A,电压U=3.0×102V,内电阻RM=0.40Ω.在此行驶状态下(取g=10m/s2),求: (1)驱动电机输入的电功率P入; (2)驱动电机的热功率P热; (3)驱动电机输出的机械功率P机; (4)蓄电池的电动势E. 19.如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力). (1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置坐标. (2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置. 2016-2017学年江西省宜春市樟树中学高二(上)第二次月考物理试卷 参考答案与试题解析 一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,1-8小题只有一个选项是正确的,9-12小题有多个选项是正确,全部选对得4分,对而不全得2分,有错或不选的不给分.) 1.一负电荷从电场中A点由静止释放,只受电场力作用,沿电场线运动到B点,它运动的v﹣t图象如图所示,则A、B两点所在区域的电场线分布情况可能是( ) A. B. C. D. 【考点】电场线;牛顿第二定律;物体做曲线运动的条件. 【分析】v﹣t图象中的斜率表示物体的加速度,所以根据电荷运动过程中v﹣t图象可知电荷的加速度越来越大,则电场力越来越大,电场强度越来越大,根据电场线与电场强度的关系可得出正确结果. 【解答】解:由v﹣t图象可知,粒子做加速度逐渐增大的加速运动,因此该电荷所受电场力越来越大,电场强度越来越大,电场线密的地方电场强度大,且负电荷受力与电场方向相反,故ABD错误,C正确. 故选C. 【点评】本题结合v﹣t图象,考查了电场强度与电场线以及电荷受电场力与电场方向之间的关系,考点结合巧妙、新颖,有创新性. 2.在医疗手术中,为防止麻醉剂乙醚爆炸,地砖要用导电材料制成,医生和护士要穿由导电材料制成的鞋子和外套,一切设备要良好接地,甚至病人身体也要良好接地,这样做是为了( ) A.除菌消毒 B.消除静电 C.利用静电 D.防止漏电 【考点】静电现象的解释. 【分析】本题考查是关于静电的防止与应用,从实例的原理出发就可以判断出答案. 【解答】解:由题意可知,良好接地,目的是为了消除静电,这些要求与消毒无关,而因静电而产生爆炸,因此不可能是这样. 静电会产生火花、热量,麻醉剂为易挥发性物品,遇到火花或热源便会爆炸,就象油罐车一样,在运输或贮存过程中,会产生静电,汽油属于易挥发性物品,所以它的屁股后面要安装接地线(软编织地线),以防爆炸,麻醉剂与之同理,故B正确,ACD错误; 故选B 【点评】本题考查是关于静电的防止与应用,要求同学们熟练掌握静电的防止与应用的具体实例. 3.如图所示,一价氢离子和二价氦离子(不考虑二者间的相互作用),从静止开始经过同一加速电场加速,垂直打入偏转电场中,则它们( ) A.同时离开偏转电场,但出射点的位置不同 B.同时离开偏转电场,出射点的位置相同 C.先后离开偏转电场,但出射点的位置相同 D.先后离开偏转电场,且出射点的位置不同 【考点】带电粒子在匀强电场中的运动. 【分析】两种粒子在偏转电场中做类平抛运动,垂直于电场方向上做匀速直线运动,根据动能定理求出加速获得的速度表达式,可分析在偏转电场中经历的时间关系.根据推论分析粒子偏转距离与加速电压和偏转电压的关系,从而得出偏转位移的关系. 【解答】解:设加速电压为U1,偏转电压为U2,偏转极板的长度为L,板间距离为d. 在加速电场中,由动能定理得:qU1=得,加速获得的速度为v0=,两种粒子在偏转电场中,水平方向做速度为v0的匀速直线运动,由于两种粒子的比荷不同,则v0不同,所以两粒子在偏转电场中运动的时间不同.两种粒子在加速电场中的加速度不同,位移相同,则运动的时间也不同,所以两粒子是先后离开偏转电场. 在偏转电场中的偏转位移y=,与电荷的电量和质量无关.知出射点的位置相同.故C正确,A、B、D错误. 故选C. 【点评】解决本题的关键知道带电粒子在加速电场和偏转电场中的运动情况,知道从静止开始经过同一加速电场加速,垂直打入偏转电场,运动轨迹相同. 4.如图所示,在光滑绝缘的水平面上,有一棱形ABCD,对角线焦点为O,在顶点B、D处各固定一个点电荷,若将一个带正电的小球从A点静止释放,小球将沿对角线AC作往返运动.则( ) A.B、D处固定的是等量的正电荷 B.B、D处固定的是等量的异种电荷 C.在A、C的连线上O点电势最低 D.运动小球在O处的机械能最小 【考点】电势差与电场强度的关系;电势. 【分析】在等量负电荷的电场中,在它们连线的中垂线上各点的电场强度的方向从无穷远处沿着中垂线指向O点,由此可以判断电场的情况和带电小球的运动的情况. 【解答】解:A、B、根据题意可知,带正电小球从A点静止释放沿AC往返运动,则受到的电场力指向O点,根据矢量的合成法则可以知道,在它们的连线中垂线上各点的电场强度的方向都是沿着中垂线指向O点,则B、D处固定的是等量的负电荷,故A、B错误. C、根据小球受到电场力的方向可知,A、C上电场线从两侧由无穷远指向O点,由沿着电场线方向,电势降低,则在A、C的连线上O点电势最低,故C正确. D、若小球P在经过AC之间往复运动,电场力做功,电势能减小,机械能增加,小球从A到C,电场力先做正功,后做负功,则电势能先减小后增加,所以机械能先增大后减小,因此小球在O处的机械能最大.故D错误. 故选:C. 【点评】本题考查的就是点电荷的电场的分布及特点,这要求同学对于基本的几种电场的情况要了解,本题看的就是学生的基本知识的掌握情况. 5.如图所示的电路中,电流表A1和A2为相同的毫安表(内阻不能忽略),当电路两端接入某一恒定电压的电源时,A1的示数为5mA.A2的示数为3mA,现将A2改接在R2所在的支路上,如图中虚线所示,图中电表均不会被烧坏,则下列说法正确的是( ) A.通过R1的电流强度必减少 B.电流表A1示数必增大 C.通过R2的电流强大必增大 D.电流表A2示数必增大 【考点】伏安法测电阻. 【分析】将A2改接在R2所在的支路上,根据串并联电路的特点判断总电阻的变化,抓住总电压不变,得出电流的变化,从而得知电流表A1分担电压的变化,得出两电阻并联部分的电压变化,从而判断出两支路电流的变化. 【解答】解:当电路两端接入恒定电压的电源时,Al的示数为5mA,A2的示数为3mA,则知通过R2的电流为2mA,知; 将A2改接在R2所在的支路上,总电阻减小,总电压不变,则干路中电流增大,即电流表Al的示数必增大.则电流表A1分担的电压增大,所以两电阻并联部分的电压减小,则通过R2 的电流更减小,所以电流表A2的示数必减小.因为总电流增大,通过R2的电流减小,则通过R1电流增大.故B正确,A、C、D错误. 故选:B. 【点评】本题是一道电路动态分析题,要注意理清解题思路,注意串并联电路特点的应用、欧姆定律的应用. 6.如图所示,两块平行带电金属板,带正电的极板接地,两板间P点处固定着一个负电荷(电荷量很小).现让两板保持距离不变而水平错开一段距离,则( ) A.两板间电压变大,P点场强变大 B.两板间电压变小,P点场强变小 C.P点电势变大,负电荷的电势能变小 D.P点电势不变,负电荷的电势能变大 【考点】电容器的动态分析;电势. 【分析】平行板电容器充电后与电源断开后,电量不变.将两极板适当错开一段距离,两板正对面积减小,根据电容的决定式分析电容如何变化,由电容的定义式分析板间电压的变化,由E=分析场强的变化.根据P点与下板电势差的变化判断P点的电势的变化,再分析正电荷在P点的电势能的变化. 【解答】解:A、B将两板水平错开一段距离,两板正对面积减小,根据电容的决定式C=可知,电容C减小,而电容器的电量Q不变,则由C=得知,板间电压U增大,板间场强E=,可见E增大.故A正确,B错误. C、D,P点到下板距离不变,由公式U=Ed得知,P点与下板电势差增大,由于电场线向上,P点的电势低于下极板的电势,则P点的电势降低,负电荷在P点的电势能ɛ变大.故CD错误; 故选:A. 【点评】本题是电容器动态变化分析问题,由电容的两个公式:C=和C=结合进行分析.同时注意在分析电势能和电势的变化时要注意零势能面的选择. 7.实验课上,老师在实验桌上摆放了晶体二极管、电阻、电容器各一只,性能均正常,要求某实验小组用多用电表对以上三元件加以区分.该小组的做法是:将多用电表的选择开关拨“R×100”挡,分别测它们的正负电阻加以区别:测甲元件时,R正=R反=0.5kΩ;测乙元件时,R正=0.5kΩ,R反=100kΩ;测丙元件时,开始指针偏转到0.5kΩ,接着读数逐渐增大,最后停在100kΩ上,则甲、乙、丙三个元件分别是( ) A.电容器、电阻、二极管 B.电阻、电容器、二极管 C.电阻、二极管、电容器 D.二极管、电阻、电容器 【考点】欧姆定律. 【分析】根据三种元器件的正向和反向通电的性质进行分析可得出正确的顺序. 【解答】解:电阻正反向的导电能力相同,故甲为电阻;而二极管反向截止,即反向电阻很大,而正向电流较小,故乙应为二极管;电容器在通电时电路中有电流产生,电阻较小,而当充满后,电容器相当于断路,故丙为电容器,故ABD错误,C正确. 故选:C. 【点评】明确三种元器件的特点是解题关键,应用电阻的变化判断. 8.如图,电源的内阻不可忽略.已知定值电阻R1=10Ω,R2=8Ω.当电键S接位置1时,电流表的示数为0.20A.那么当电键S接位置2时,电流表的示数不可能是下列的哪些值( ) A.0.28A B.0.25A C.0.22A D.0.19A 【考点】闭合电路的欧姆定律. 【分析】根据欧姆定律求出电键S接位置1时路端电压.当电键S接位置2时,外电阻减小,路端电压减小,总电流增大,根据欧姆定律进行分析. 【解答】解:当电键S接位置1时,电流表的示数为0.20A,则根据欧姆定律得知:路端电压U1=I1R1=10×0.2V=2V. A、当电键S接位置2时,若电流表的示数为I2=0.28A,根据欧姆定律得到,路端电压U2=I2R1=0.28×8V=2.24V.但是由于R2<R1,路端电压减小,不可能增大,所以U2<2V,则电流表的示数不可能是0.28A.故A错误. B、当电键S接位置2时,若电流表的示数为I2=0.25A,根据欧姆定律得到,路端电压U2=I2R1=0.25×8V=2V.但U2<2V,所以电流表的示数不可能是0.25A.故B错误. C、当电键S接位置2时,若电流表的示数为I2=0.22A,根据欧姆定律得到,路端电压U2=I2R1=0.22×8V=1.76,可见U2<2V,而且外电路减小,电路中电流大于0.2A,则电流表的示数可能是0.22A.故C正确. D、由于R2<R1,当电键S接位置2时,电流表的示数大于0.20A.故D错误. 本题选择不可能的,故选:ABD. 【点评】本题要根据闭合电路欧姆定律分析路端电压与外电阻的关系,同时分析总电流与外电路总电阻的关系,可确定出电流表示数的范围进行选择. 9.如图所示,圆形区域竖直轴与水平轴分别为PQ和MN,O为圆心.空间存在水平方向的匀强电场.正点电荷以相同速率v沿各个方向从A点进入圆形区域,从圆周上不同点离开,其中从C点离开时动能最大.则以下判断正确的是( ) A.从B点离开圆形区域的带电微粒的动能最小 B.从P点离开圆形区域的带电微粒的动能最小 C.从N点离开圆形区域的带电微粒的速率为v D.到达M点的粒子电势能最大 【考点】匀强电场中电势差和电场强度的关系;电势能. 【分析】带正电的微粒以相同的初动能沿着各个方向从A点进入圆形区域中,在电场力和重力作用下运动,从C点离开圆形区域的带电微粒的动能最大,根据动能定理知合力做功最多,则AC沿合力方向上的距离最大.再根据动能定理进行分析即可. 【解答】解:A、正点电荷以相同速率v沿各个方向从A点进入圆形区域,从圆周上不同点离开,其中从C点离开时动能最大.根据动能定理知,合力做功最大,即AC沿合力方向上的距离最大.由于AP两点合力方向上的距离不是最小,根据动能定理知,合力做功不是最小,则离开时带电微粒的动能不是最小.故A正确,B错误. C、从N点离开时,合力做功不为零,根据动能定理知,从N点离开时的速率大于v.故C错误. D、从A点到M点电场力所做的负功最多,电势能增加最多,所以到达M点的粒子电势能最大.故D正确. 故选:AD. 【点评】解决本题的关键抓住C点是沿电场强度方向离A点最远,通过动能定理分析,以及知道电场力做功等于电势能的减小量,电场力所做的负功越多,电势能的增加量越大. 10.某同学欲采用如图所示的电路完成相关实验.图中电流表A的量程为0.6A,内阻约0.1Ω;电压表V的量程为3V,内阻约6kΩ;G为小量程电流表;电源电动势约3V,内阻较小.下列实验电路中正确的是( ) A.测定一段电阻丝(约5Ω)的电阻 B.测定电池的电动势和内阻(约2.0Ω) C.描绘小灯泡(额定电压2.5V)的伏安特性曲线 D.多用电表欧姆档测二极管正向电阻 【考点】描绘小电珠的伏安特性曲线. 【分析】A、伏安法测电阻的电路有两种接法.一种是电流表外接,适用于测量小电阻.另一种方法是电流表内接,适用于测量大电阻.待测电阻丝的电阻与电流表内阻相当,属于小电阻. B、测定电源的电动势和内电阻,在该电路图中,电压表测量的是电源两端的电压,电流表应测量通过电源的电流,测的数据偏小,误差形成的原因是电压表的分流作用. C、描绘小灯泡(额定电压为2.5 V)的伏安特性曲线,电流电压要从0测起,滑动变阻器应该用分压式. D、欧姆表红表笔与内置电源负极相连,黑表笔与正极相连. 【解答】解:A、待测电阻丝的电阻与电流表内阻相当,远小于电压表内阻,该待测电阻属于小电阻,电流表应用外接法.故A正确. B、电压表测量的是电源两端的电压,电流表应测量通过电源的电流,测的数据偏小,误差形成的原因是电压表的分流作用.在该实验中,电压表内阻非常大,分流很不明显,误差较小.故B正确. C、描绘小灯泡(额定电压为2.5 V)的伏安特性曲线,电流电压要从0测起,滑动变阻器应该用分压式,不能用限流式.故C错误. D、测量晶体二极管的正向电阻时红表笔应与它的负极连接,故D正确; 故选:ABD 【点评】解决本题的关键掌握电流表的内外接问题和滑动变阻器的分压限流接法,以及会对实验进行误差分析. 11.如图电路,C为电容器的电容,D为理想二极管(具有单向导通作用),电流表、电压表均为理想表.闭合开关S至电路稳定后,调节滑动变阻器滑片P向左移动一小段距离,结果发现电压表V1的示数改变量大小为△U1,电压表V2的示数改变量大小为△U2,电流表A的示数改变量大小为△I,则下列判断正确的有( ) A.的值变大 B.的值变大 C.的值不变,且始终等于电源内阻r D.滑片向左移动的过程中,电容器所带的电荷量要不断减少 【考点】电容;闭合电路的欧姆定律. 【分析】由电路图先明确电路的结构,再根据滑动变阻器的移动明确电阻的变化;由闭合电路欧姆定律可知电路电流的变化,则可分析内电压、路端电压及各部分电压的变化. 【解答】解:由图可知R1与R串联,V1测R两端的电压,V2测路端的电压. 若P向左端移动,则滑动变阻器接入电阻增大,由闭合电路欧姆定律可知,电路中总电流减小,则内电压减小, 路端电压增大,即电压表V2的示数增大,R1两端的电压减小,所以V1的示数增大. A、根据欧姆定律得的值等于滑动变阻器的阻值,所以的值变大,故A正确; B、根据闭合电路欧姆定律得:U1=E﹣I(R1+r),则=R1+r, 所以的值不变;故B错误; C、根据闭合电路欧姆定律得:由U2=E﹣Ir, 则=r, 所以的值不变;故C正确; D、滑片向左移动的过程中,由于理想二极管具有单向导通作用,只会充电,不会放电,所以电容器所带的电荷量不变,故D错误; 故选:AC. 【点评】闭合电路欧姆定律的动态分析类题目,一般可按外电路﹣内电路﹣外电路的分析思路进行分析,在分析时应注意结合闭合电路欧姆定律及串并联电路的性质. 12.如图所示,平行实线代表电场线,方向未知,带电量为1×10﹣2C的正电荷在电场中只受电场力作用.该电荷由A点运动到B点,动能损失了0.1J,若A点电势为10V,则( ) A.B点的电势为零 B.电场线方向向左 C.电荷运动的轨迹可能是图中曲线① D.电荷运动的轨迹可能是图中曲线② 【考点】电势;电场强度. 【分析】物体作曲线运动的条件:合外力的方向与物体运动的方向不在同一条直线上,且合外力指向轨迹的内侧;正电荷所受电场力的方向与场强的方向相同;要求B点电势,需要知道AB之间的电势差UAB=φA﹣φB,而UAB=. 【解答】解:A、由题有电荷由A点运动到B点,根据动能定理得 WAB=qUAB=﹣0.1J, 故UAB===﹣10V, 而UAB=φA﹣φB=10﹣φB=﹣10V, 故φB=20V.故A错误. B、由于该电荷从A点运动到B点,动能损失了0.1J,故电场力做负功,所以该正电荷所受的电场力水平向左,由于电场力向左,而正电荷所受电场力的方向与电场线的方向相同,故电场线方向向左,故B正确; CD、根据电场力指向轨迹的内侧,而电场力水平向左,故电荷运动的轨迹可能是图中曲线①,故C正确,D错误; 故选:BC. 【点评】本题考查物体作曲线运动的条件:合外力的方向与物体运动的方向不在同一条直线上,且合外力指向轨迹的内侧;正电荷所受电场力的方向与电场线的方向相同;电场力做功的公式WAB=qUAB,动能定理,电势差的公式UAB=φA﹣φB.本题难度不大,但综合性很强;在用公式WAB=qUAB解题时要注意q和UAB的正负号. 二、实验题:(18分) 13.写出下面游标卡尺和螺旋测微器的读数 10.06 cm、 4.700 mm. 【考点】刻度尺、游标卡尺的使用;螺旋测微器的使用. 【分析】解决本题的关键掌握游标卡尺读数的方法,主尺读数加上游标读数,不需估读.螺旋测微器的读数方法是固定刻度读数加上可动刻度读数,在读可动刻度读数时需估读. 【解答】解:1、游标卡尺的主尺读数为100mm,游标尺上第20个刻度和主尺上某一刻度对齐,所以游标读数为6×0.1mm=0.6mm,所以最终读数为:100mm+0.6mm=100.6mm=10.06cm. 2、螺旋测微器的固定刻度为4.5mm,可动刻度为20.0×0.01mm=0.200mm,所以最终读数为6.5mm+0.200mm=4.700mm. 故答案为:10.06;4.700 【点评】对于基本测量仪器如游标卡尺、螺旋测微器等要了解其原理,要能正确使用这些基本仪器进行有关测量. 14.某同学为了测定一只电阻的阻值,采用了如下方法: 用多用电表粗测:多用电表电阻挡有4个倍率,分别为“×1k”、“×100”、“×10”、“×1”.该同学选择“×100”倍率,用正确的操作步骤测量时,发现指针偏转角度太大(指针位置如图虚线所示).为了较准确地进行测量,请你补充完整下列依次应该进行的主要操作步骤: a.换用倍率 ×10 的挡. b.两表笔短接,调节欧姆调零旋钮,使指针指在“0Ω”处. c.重新测量并读数,若这时刻度盘上的指针位置如图中实线所示,测量结果是 120Ω . 【考点】伏安法测电阻. 【分析】用欧姆表测电阻要选择合适的挡位使指针指在中央刻度线附近,欧姆表换挡后要重新进行欧姆调零;欧姆表指针示数为挡位的乘积是欧姆表示数. 【解答】解:a、选择“×100”倍率,用正确的操作步骤测量时,指针偏转角度太大,说明所选挡位太大,为准确测量电阻阻值,应换用倍率×10的挡. c、欧姆表选择×10挡位,由图示表盘可知,测量结果为:12×10=120Ω; 故答案为:a、×10;c、120Ω. 【点评】本题考查了欧姆表的使用及读数;要掌握常用器材的使用方法与读数方法;本题是一道 基础题,掌握基础知识即可解题,平时要注意基础知识的学习与掌握. 15.如图1所示,用伏安法测电源电动势和内阻的实验中,在电路中接一阻值为2Ω的电阻R0,通过改变滑动变阻器,得到几组电表的实验数据: U(V) 1.2 1.0 0.8 0.6 I(A) 0.10 0.17 0.23 0.30 (1)用作图法在图2中坐标系内作出U﹣I图线; (2)利用图线,测得电动势E= 1.5 V,内阻r= 1.0 Ω(答案保留两位有效数字). (3)某同学测另一串联电池组的输出功率P随外电阻R变化的曲线如图3所示.由所得图线可知,被测电池组电动势E= 30 V,电池组的内阻r= 5 Ω. 【考点】测定电源的电动势和内阻. 【分析】(1)先描点,然后用一条直线连接起来,如果不能通过所有点,使曲线两侧的点数大致相同; (2)电源的U﹣I图象的纵轴截距表示电源的电动势;斜率表示内电阻; (3)当内外电阻相等时,电源的输出功率最大,利用这个结论求解即可. 【解答】解:(1)先描点,然后用一条直线连接起来,如果不能通过所有点,使曲线两侧的点数大致相同,如图所示; (2)电源的U﹣I图象的纵轴截距表示电源的电动势,故E=1.5V; 斜率表示内电阻,即R0+r===3.0Ω, 故r=3.0﹣2.0=1.0Ω; (3)当内外电阻相等时,电源的输出功率最大,由图象可以看出,当电阻R=5Ω时,电源的输出功率最大,为45W,故电源内阻为5Ω; 再根据P=I2R=()2R,有:45=()2×5,解得:E=30V. 故答案为:(1)如图所示;(2)1.5; 1.0; (3)30,5. 【点评】本题考查测量电动势和内电阻的实验;要注意明确实验原理,知道电源的U﹣I图象的物理意义; 同时明确“当内外电阻相等时,电源的输出功率最大”的结论. 三、计算题(共34分.要求写出必要的文字说明、主要方程式和重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分.) 16.如图所示,在竖直放置的光滑半圆弧形绝缘细管的圆心O处放一点电荷,将质量为m、带电荷量为q的小球从圆弧管水平直径的端点A由静止释放,当小球沿细管下滑到最低点时,对细管的上壁的压力恰好与球重相同,求圆心处的电荷在圆弧管内产生的电场的场强大小. 【考点】动能定理的应用;牛顿第二定律;向心力. 【分析】小球沿细管下滑到最低点的过程中,电场力不做功,只有重力做功,由动能定理求出小球经过最低点时速度.经过最低点时,由重力、电场力和轨道的弹力的合力提供小球的向心力,由牛顿第二定律求出电场力,再求解场强大小. 【解答】解:小球从A到最低点过程,电场力不做功,由动能定理得: mgR=mv2 在最低点,由牛顿第二定律: F﹣mg﹣FN= 又F=qE,FN=mg 解得E= 答:圆心处的电荷在圆弧管内产生的电场的场强大小为E=. 【点评】本题动能定理与向心力知识的综合应用,是常见的题型,基础题,要注意电场力与速度方向始终垂直,对小球不做功的特点. 17.如图所示,R为电阻箱,电压表为理想电压表.当电阻箱读数为R1=2Ω时,电压表读数为U1=4V;当电阻箱读数为R2=5Ω时,电压表读数为U2=5V.求: (1)电源的电动势E和内阻r; (2)当电阻箱R读数为多少时,电源的输出功率最大?最大值Pm为多少? 【考点】闭合电路的欧姆定律. 【分析】(1)运用闭合电路欧姆定律,分别研究电阻为R1和R2的情况,列出含有电动势和内阻的方程组求解. (2)当电阻箱的阻值等于电源的内电阻时,电源的输出功率最大,再求解Pm. 【解答】解:(1)由闭合电路欧姆定律得: E=U1+r,代入得:E=4+r=4+2r…① E=U2+r,代入得:E=5+r=5+r…② 联立上式并代入数据解得:E=6V,r=1Ω 即电源电动势为6V,内阻为1Ω; (2)电源的输出功率表达式为:P=I2R=R 将上式变形为:P= 根据数学知识知:因为R=r2,所以R=,即 R=r=1Ω时,P有最大值为: Pm==W=9W; 答:(1)电源电动势为6V,内阻为1Ω. (2)当电阻箱R读数为1Ω时,电源的输出功率最大,最大值Pm为9W. 【点评】本题是测量电源电动势和内阻的方法:伏阻法.电压表和定值电阻组合,相当于电压表和电流表双重作用. 18.一辆以蓄电池为驱动能源的环保电动汽车,拥有三十多个座位,其电池每次充电仅需三至五个小时,蓄电量可让汽车一次性跑5.0×105m,汽车时速最高可达1.8×102km/h,汽车总质量为9.0×103kg.驱动电机直接接在蓄电池的两极,且蓄电池的内阻为r=0.20Ω.当该汽车在某城市快速水平公交路面上以v=90km/h的速度匀速行驶时,驱动电机的输入电流I=1.5×102A,电压U=3.0×102V,内电阻RM=0.40Ω.在此行驶状态下(取g=10m/s2),求: (1)驱动电机输入的电功率P入; (2)驱动电机的热功率P热; (3)驱动电机输出的机械功率P机; (4)蓄电池的电动势E. 【考点】闭合电路的欧姆定律;电功、电功率. 【分析】(1)根据P=UI求出驱动电机的输入功率. (2)由P=I2r可求得热功率; (3)由输入功率与热功率的差值可求出机械功率; (4)由闭合电路欧姆定律可求得电源的电动势; 【解答】解: (1)驱动电机输入的电功率: (2)驱动电机的热功率: (3)驱动电机输出的机械功率: (4)蓄电池的电动势:E=U+IR=(3.0×102+1.5×102×0.2)V=3.3×102V 答:(1)驱动电机输入的电功率P入为4.5×104W (2)驱动电机的热功率P热;为9.0×103W; (3)驱动电机输出的机械功率P机3.6×104W (4)蓄电池的电动势E为3.3×102V 【点评】解决本题的关键掌握功率的公式P=UI,以及机械功率的公式P=Fv的应用;要注意体会能量的转化与守恒关系. 19.(2011吉林一模)(附加题)如图所示为研究电子枪中电子在电场中运动的简化模型示意图.在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形(不计电子所受重力). (1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置坐标. (2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置. 【考点】带电粒子在匀强电场中的运动. 【分析】(1)在AB边的中点处由静止释放电子,电场力对电子做正功,根据动能定理求出电子穿过电场时的速度.进入电场II后电子做类平抛运动,水平方向做匀速直线运动,竖直方向做匀加速直线运动,由牛顿第二定律求出电子的加速度,由运动学公式结合求出电子离开ABCD区域的位置坐标. (2)在电场I区域内适当位置由静止释放电子,电子先在电场Ⅰ中做匀加速直线运动,进入电场Ⅱ后做类平抛运动,根据牛顿第二定律和运动学公式结合求出位置x与y的关系式. 【解答】解:(1)设电子的质量为m,电量为e,电子在电场I中做匀加速直线运动,设射出区域I时的为v0. 根据动能定理得 eEL= 进入电场II后电子做类平抛运动,假设电子从CD边射出,出射点纵坐标为y,有 =,a=,t= 代入解得 解得 y=,即电子离开ABCD区域的位置坐标为(﹣2L,). (2)设释放点在电场区域I中,其坐标为(x,y),在电场I中电子被加速到v1,然后进入电场II做类平抛运动,并从D点离开,有 eEx= y== 解得 xy=,即在电场I区域内满足此方程的点即为所求位置. 答:(1)在该区域AB边的中点处由静止释放电子,电子离开ABCD区域的位置坐标为(﹣2L,). (2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,所有释放点的位置在xy=曲线上. 【点评】本题实际是加速电场与偏转电场的组合,考查分析带电粒子运动情况的能力和处理较为复杂的力电综合题的能力. 查看更多