高中物理 第十七章 波粒二象性 4 概率波素材 新人教版选修3-5(通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高中物理 第十七章 波粒二象性 4 概率波素材 新人教版选修3-5(通用)

‎4概率波 ‎ 历史由来 在1920年代与1930年代,理论量子物理学者大致分为两个阵营。第一个阵营的成员主要为路易·德布罗意和埃尔温·薛定谔等等,他们使用的数学工具是微积分,他们共同创建了波动力学。第二个阵营的成员主要为维尔纳·海森堡和马克斯·玻恩等等,使用线性代数,他们建立了矩阵力学。后来,薛定谔证明这两种方法完全等价。‎ 德布罗意于1924年提出的德布罗意假说表明,每一种微观粒子都具有波粒二象性。电子也不例外,具有这种性质。电子是一种波动,是电子波。电子的能量与动量分别决定了它的物质波频率与波数。既然粒子具有波粒二象性,应该会有一种能够正确描述这种量子特性的波动方程,这点子给予埃尔温·薛定谔极大的启示,他因此开始寻找这波动方程。薛定谔参考威廉·哈密顿先前关于牛顿力学与光学之间的类比这方面的研究,在其中隐藏了一个奥妙的发现,即在零波长极限,物理光学趋向于几何光学;也就是说,光波的轨道趋向于明确的路径,而这路径遵守最小作用量原理。哈密顿认为,在零波长极限,波传播趋向于明确的运动,但他并没有给出一个具体方程来描述这波动行为,而薛定谔给出了这方程。他从哈密顿-雅可比方程成功地推导出薛定谔方程。他又用自己设计的方程来计算氢原子的谱线,得到的答案与用玻尔模型计算出的答案相同。他将这波动方程与氢原子光谱分析结果,写为一篇论文,1926年,正式发表于物理学界。从此,量子力学有了一个崭新的理论平台。‎ 薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。那时,物理学者尚未能解释波函数的涵义,薛定谔尝试用波函数来代表电荷的密度,但遭到失败。1926年,玻恩提出概率幅的概念,成功地解释了波函数的物理意义。可是,薛定谔本人不赞同这种统计或概率方法,和它所伴随的非连续性波函数坍缩,如同爱因斯坦认为量子力学只是个决定性理论的统计近似,薛定谔永远无法接受哥本哈根诠释。在他有生最后一年,他写给玻恩的一封信内,薛定谔清楚地表明了这意见。‎ ‎1927年,道格拉斯·哈特里(Douglas Hartree)与弗拉基米尔·福克(Vladimir Fock)在对于多体波函数的研究踏出了第一步,他们发展出哈特里-福克方程来近似方程的解。这计算方法最先由哈特里提出,后来福克将之加以改善,能够符合泡利不相容原理的要求。‎ 薛定谔方程不具有洛伦兹不变性,无法准确给出符合相对论的结果。薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程,并且描述电子的相对论性量子行为。但是这方程给出的精细结构不符合阿诺·索末菲的结果,又会给出违背量子力学的负概率和怪异的负能量现象,他只好将这相对论性部分暂时搁置一旁,先行发表前面提到的非相对论性部分。‎ ‎1926年,奥斯卡·克莱因(Oskar Klein)和沃尔特·戈尔登(Walter Gordon)将电磁相对作用纳入考量,独立地给出薛定谔先前推导出的相对论性部分,并且证明其具有洛伦兹不变性。这方程后来称为克莱因-戈尔登方程。‎ ‎1928年,保罗·狄拉克最先成功地统一了狭义相对论与量子力学,他推导出狄拉克方程,适用于电子等等自旋为1/2的粒子。这方程的波函数是一个旋量,拥有自旋性质。‎
查看更多

相关文章

您可能关注的文档