高中物理新课标人教版必修2优秀教案:向心力

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高中物理新课标人教版必修2优秀教案:向心力

7 向心力 整体设计 向心力是本节教学的重点,由向心加速度和牛顿第二定律引入向心力是教材所用的方法, 这与以前的先学习向心力再学习向心加速度有所不同.学生对于向心力的理解不是很清楚,本 节重点突出了向心力的理解及向心力在圆周运动中的作用.而向心力概念的学习,应及时强调 指出,向心力是根据力的效果命名的,而不是根据力的性质命名的,它不是重力、弹力、摩 擦力等以外的特殊力,而是做匀速圆周运动的质点受到的合外力,沿着半径指向圆心,它的 方向时刻改变.本节的难点是运用向心力、向心加速度知识解释有关现象,处理有关问题.在学 习时可以让学生认识实例:用细线系着的小球在水平面上做匀速圆周运动或是一些生活中的 实例让学生体验或观察,从而引入向心力概念. 教学重点 向心力概念的建立及计算公式的得出及应用. 教学难点 向心力的来源. 时间安排 1 课时 三维目标 知识与技能 1.理解向心力的概念. 2.知道向心力大小与哪些因素有关.理解公式的确切含义,并能用来计算. 3.会根据向心力和牛顿第二定律的知识分析和讨论与圆周运动相关的物理现象. 过程与方法 1.通过向心力概念的学习,知道从不同角度研究问题的方法. 2.体会物理规律在探索自然规律中的作用及其运用. 情感态度与价值观 1.经历科学探究的过程,领略实验是解决物理问题的一种基本途径,培养学生实事求是的科学 态度. 2.通过探究活动,使学生获得成功的喜悦,提高他们学习物理的兴趣和自信心. 3.通过向心力和向心加速度概念的学习,认识实验对物理学研究的作用,体 会物理规律与生活的联系. 课前准备 细杆、细绳(2)、小球、直尺、秒表、盛水的透明小桶. 教学过程 导入新课 情景导入 前面两节课,我们学习、研究了圆周运动的运动学特征,知道了如何描述圆周运动.知道 了什么是向心加速度和向心加速度的计算公式,这节课我们再来学习物体做圆周运动的动力 学特征. 观察下面几幅图片,并根据图做水流星实验,让学生自己体验实验中力的变化,考虑一 下为什么做圆周运动的物体没有沿着直线飞出去而是沿着一个圆周运动. 前三幅图可以看出物体之所以没有沿直线飞出去是因为有绳子在拉着物体,而第四幅图 是太阳系各个行星绕太阳做圆周运动是由于太阳和行星之间有引力作用,是太阳和行星之间 的引力使各个行星绕太阳在做圆周运动.如果没有绳的拉力和太阳与行星之间的引力,那么这 些物体就不可能做圆周运动,也就是说做匀速圆周运动的物体都会受到一个力,这个力拉着 物体使物体沿着圆形轨道在运动,我们把这个力叫做向心力. 复习导入 复习旧知 1.向心加速度:做匀速圆周运动的物体,加速度指向圆心,这个加速度称为向心加速度. 2.表达式:an= r v 2 =rω2. 3.牛顿第二定律:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟 作用力的方向相同.表达式:F=ma. 推进新课 一、向心力 通过刚才的学习我们知道了向心力和向心加速度具有相同的方向,都指向圆心,而且物 体是在向心力的作用下做圆周运动,因此我们根据牛顿第二定律可知向心力的大小为: Fn=m an=m R v 2 =m rω2=mr( T 2 )2. 实验探究 演示实验(验证上面的推导式):研究向心力跟物体质量 m、轨道半径 r、角速度ω的定量关系. 实验装置:向心力演示器 演示:摇动手柄,小球随之做匀速圆周运动. ①向心力与质量的关系:ω、r 一定,取两球使 mA=2mB,观察:(学生读数)FA=2FB,结论:向心 力 F∝m. ②向心力与半径的关系:m、ω一定,取两球使 rA=2rB,观察:(学生读数)FA=2FB,结论:向心力 F∝r. ③向心力与角速度的关系:m、r 一定,使ωA=2ωB,观察:(学生读数)FA=4FB,结论:向心力 F∝ω2. 归纳总结:综合上述实验结果可知:物体做匀速圆周运动需要的向心力与物体的质量成正比, 与半径成正比,与角速度的二次方成正比.但不能由一个实验、一个测量就得到定论,实际上 要进行多次测量,大量实验,但我们不可能一一去做.同学们由刚才所做的实验得出:m、r、 ω越大,F 越大;若将实验稍加改进,如教材中所介绍的小实验,加一弹簧秤测出 F,可粗略 得出结论(要求同学回去做).我们还可以设计很多实验都能得出这一结论,说明这是一个带有共 性的结论.测出 m、r、ω的值,可知向心力大小为:F=mrω2. 二、实验:用圆锥摆粗略验证向心力表达式 原理:如图所示,让细绳摆动带动小球做圆周运动,逐渐增大角速度直到绳刚好拉直,用秒 表测出 n 转的时间 t,计算出周期 T,根据公式计算出小球的角速度ω.用刻度尺测出圆半径 r 和小球距悬点的竖直高度 h,计算出角θ的正切值.向心力 F=mgtanθ,测出数值验证公式 mgtanθ=mrω2. 课堂训练 1.下列关于向心力的说法中,正确的是( ) A.物体由于做圆周运动产生了一个向心力 B.做匀速圆周运动的物体,其向心力为其所受的合外力 C.做匀速圆周运动的物体,其向心力不变 D.向心加速度决定向心力的大小 2.有长短不同、材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀 速圆周运动,那么( ) A.两个小球以相同的线速度运动时,长绳易断 B.两个小球以相同的角速度运动时,长绳易断 C.两个球以相同的周期运动时,短绳易断 D.不论如何,短绳易断 3.A、B 两质点均做匀速圆周运动,mA∶mB=RA∶RB=1∶2,当 A 转 60 转时,B 正好转 45 转, 则两质点所受向心力之比为多少? 参考答案:1.B 2.B 3.解答:设在时间 t 内,nA=60 转,nB=45 转,质点所受的向心力 F=mω2R=m( t n2 )2·R ,t 相同, F∝mn2R 所以 9 4 2 1 45 60 2 1 2 2 2 2  BBB AAA B A Rnm Rnm F F . 讨论交流 1.根据我们前面的学习,大家讨论生活中你所遇到的圆周运动中是哪些力在提供向心力. 强调:向心力不是像重力、弹力、摩擦力那样作为某种性质的力来命名的.它是从力的作用效 果来命名的,凡是产生向心加速度的力,不管是属于哪种性质的力,都是向心力. 2.由物体做曲线运动的条件可知,物体必定受到一个与它的速度方向不在同一条直线上的合外 力作用,匀速圆周运动是一种曲线运动,匀速圆周运动合外力的方向有何特点呢? 匀速圆周运动速率不变,方向始终垂直半径,说明合外力不会使速度大小发生变化,只改变 速度方向,匀速圆周运动合外力的方向始终指向圆心. 三、变速圆周运动和一般曲线运动 问题:前面我们学习了加速度,做直线运动的物体其加速度可以改变物体运动的快慢,现在 我们又学习了向心加速度,那么向心加速度是否也改变物体运动速度的大小? 讨论交流 根据刚才我们的实验(验证向心力表达式的实验)可知,向心加速度并不能改变物体运 动速度的大小,而是在改变物体运动的方向.我们在这个实验中可以感受到,如果要使物体的 速度不断增大,我们对物体施加的力就不能保持始终指向圆心,而是与向心力的方向有一个 角度.根据力 F 产生的效果可以把力 F 分解成两个相互垂直的两个分力:一个是指向圆心的产 生向心加速度的向心力;另一个是沿圆周的切线方向的分力,这个力沿圆周切线方向产生加速 度,这个加速度使物体的速度不断变大.因此这个运动不能是匀速圆周运动,而是变速圆周运 动.也就是说变速圆周运动既有指向圆心的向心加速度,还有沿圆周切线方向的加速度,称为 切向加速度. 做变速圆周运动的物体所受的力 曲线运动:物体的运动轨迹不是直线也不是圆周的曲线运动.对于这样的运动尽管曲线的 各个地方的弯曲程度不同,我们在研究时可以把这条曲线分成许多极短的小段,每一小段可 以看作是一段圆弧.这些圆弧的弯曲程度不同,可以表示为有不同的半径,这样在分析质点运 动时,就可以采用圆周运动的分析方法来处理问题了. 一般的曲线可以分为很多小段,每段都可以看作一小段圆弧,各段圆弧的半径不一样 课堂训练 1.如图所示,在光滑的水平面上钉两个钉子 A 和 B,相距 20 cm.用一根长 1 m 的细绳,一端系 一个质量为 0.5 kg 的小球,另一端固定在钉子 A 上.开始时球与钉子 A、B 在一条直线上,然 后使小球以 2 m/s 的速率开始在水平面内做匀速圆周运动.若绳子能承受的最大拉力为 4 N,那 么从开始到绳断所经历的时间是多少? 解析:球每转半圈,绳子就碰到不作为圆心的另一个钉子,然后再以这个钉子为圆心做匀速 圆周运动,运动的半径就减小 0.2 m,但速度大小不变(因为绳对球的拉力只改变球的速度方 向).根据 F=mv2/r 知,绳每一次碰钉子后,绳的拉力(向心力)都要增大,当绳的拉力增大 到 Fmax=4 N 时,球做匀速圆周运动的半径为 rmin,则有 Fmax=mv2/rmin rmin=mv2/Fmax=(0.5×22/4)m=0.5 m. 绳第二次碰钉子后半径减为 0.6 m,第三次碰钉子后半径减为 0.4 m.所以绳子在第三次碰到钉 子后被拉断,在这之前球运动的时间为: t=t1+t2+t3 =πl/v+π(l-0.2)/v+π(l-0.4)/v =(3l-0.6)·π/v =(3×1-0.6)×3.14/2 s =3.768 s. 答案:3.768 s 说明:需注意绳碰钉子的瞬间,绳的拉力和速度方向仍然垂直,球的速度大小不变,而绳的 拉力随半径的突然减小而突然增大. 2.如图所示,水平转盘的中心有个竖直小圆筒,质量为 m 的物体 A 放在转盘上,A 到竖直筒 中心的距离为 r.物体 A 通过轻绳、无摩擦的滑轮与物体 B 相连,B 与 A 质量相同.物体 A 与转 盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体 A 才能随盘转 动? 解析:由于 A 在圆盘上随盘做匀速圆周运动,所以它所受的合外力必然指向圆心,而其中重 力、支持力平衡,绳的拉力指向圆心,所以 A 所受的摩擦力的方向一定沿着半径或指向圆心 或背离圆心. 当 A 将要沿盘向外滑时,A 所受的最大静摩擦力指向圆心,A 的向心力为绳的拉力与最 大静摩擦力的合力,即 F+Fm′=mω12r ① 由于 B 静止,故 F=mg ② 由于最大静摩擦力是压力的μ倍,即 Fm′=μFN=μmg ③ 由①②③解得ω1= rg /)1(  当 A 将要沿盘向圆心滑时,A 所受的最大静摩擦力沿半径向外,这时向心力为: F-Fm′=mω22r ④ 由②③④得ω2= rg /)1(  . 故 A 随盘一起转动,其角速度ω应满足 rgrg /)1(/)1(   . 答案: rgrg /)1(/)1(   课堂小结 1.向心力来源. 2.匀速圆周运动时,仅有向心加速度.同时具有向心加速度和 切向加速度的圆周运动是变速圆周运动. 3.匀速圆周运动向心加速度大小不变,方向指向圆心,时刻在变化,所以不是匀变速 运动. 布置作业 教材“问题与练习”第 1、3 题. 板书设计 7.向心力 1.做匀速圆周运动的物体具有向心加速度,根据牛顿第二定律,这个加速度一定是由于它受到 了指向圆心的合力.这个合力叫做向心力 2.表达式:Fn=m an= m R v 2 =m rω2=mr( T 2 )2 3.向心力的方向:指向圆心 4.向心力由物体所受的合力提供 活动与探究 课题:讨论汽车在过弯道时为什么要减速,不减速会出现什么情况,如果让你设计弯道你应 该怎么设计,设计的依据是什么. 过程:用汽车模型(最好用遥控小汽车,以便于方向的改变)或其他工具模拟汽车在过弯道 时,为何要减速.若不减速应该怎么办.通过实际操作,找到合适的方法,并进行理论分析. 习题详解 1.解答:地球绕太阳做匀速圆周运动的向心加速度为 a=ω2r= 22 )360024365 14.32()2(  rT  ×1.5×1011 m/s2=5.95×10-5 m/s2 所以太阳对地球的引力是 F=ma=6.0×1024×5.95×10-5N=3.57×1020 N. 2.解答:小球的受力分析如图所示,因此小球的向心力是由重力和支持力的合力提供的. 3.解答:(1)向心力 F=mω2r=0.10×42×0.10 N=0.16 N. (2)我同意甲的观点,因为物体的受力为重力、支持力和静摩擦力,其中重力和支持力的合 力为零,所以合外力即为静摩擦力.另外,物体相对于圆盘的运动趋势是沿半径方向向外,而不 是向后,故乙的观点是错误的. 4.解答:根据机械能守恒有不论钉子钉在何处,小球到达最低点的速度都是相等的,而在碰钉 子前和碰钉子后的区别就是做圆周运动的圆心由 O 点移到 A 点,即圆周运动的半径不一样. 设碰钉子后细绳的拉力为 T,则据牛顿第二定律有 T-mg= r vm 2 .可以看出,当 r 越小时,细绳 的拉力 T 越大,即当细绳与钉子相碰时,如果钉子的位置越靠近小球,绳就越容易断. 5.解答:我认为正确的是丙图,因为如果将力 F 分解为沿切线和垂直于切线的两个方向,由于 汽车是沿 M 向 N 的方向上做减速运动,则只有丙图是符合的. 设计点评 向心力和向心加速度是比较抽象的内容,因此学生不太容易理解,在教学设计时尽量采 用了一些生活中的事例,易于帮助学生理解.本设计让学生通过自己动手实验亲自感受拉力的 变化,加深对向心力的理解.教学中尽可能多地让学生参与课堂教学活动和课堂实验,体现了 以学生为主体的教学理念.
查看更多

相关文章

您可能关注的文档