【物理】山东省淄博第七中学2019-2020学年高一下学期4月期中考试试题 (解析版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】山东省淄博第七中学2019-2020学年高一下学期4月期中考试试题 (解析版)

山东省淄博第七中学2019-2020学年高一下学期4月 期中考试试题 一、单项选择(每小题2分,共20分。)‎ ‎1.我国绕月探测工程“嫦娥一号”取得圆满成功。已知地球的质量M1约为5.97×‎1024kg、其半径R1约为6.37×‎103km;月球的质M2约为7.36×‎1022kg,其半径R2约为1.74×‎103km,人造地球卫星的第一宇宙速度为‎7.9km/s,那么由此估算月球卫星的第一宇宙速度(相对月面的最大环绕速度)最接近于下列哪个数值(  )‎ A. ‎‎3.7‎km/s B. ‎9.7km/s C. ‎5.7km/s D. ‎1.7km/s ‎【答案】D ‎【解析】‎ ‎【详解】设地球第一宇宙速度为v1,月球第一宇宙速度为v2,由万有引力提供向心力可得对于地球,对于月球,解得,,所以有,代入数据解得,故D正确,ABC错误。‎ ‎2.未来的星际航行中,宇航员长期处于完全失重状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是 A. 旋转舱的半径越大,转动的角速度就应越大 B. 旋转舱的半径越大,转动的角速度就应越小 C. 宇航员质量越大,旋转舱的角速度就应越大 D. 宇航员质量越大,旋转舱的角速度就应越小 ‎【答案】B ‎【解析】‎ ‎【详解】在外太空,宇航员处于完全失重状态,所以在旋转仓中我们不需要考虑地球引力作用;宇航员在旋转仓中做圆周运动所需要的向心力由侧壁支持力提供,根据题意有 ‎,故可知,旋转半径越大,转运角速度就越小,且与宇航员质量无关,故B正确、ACD错误.‎ ‎3.‎2016年2月11日,美国科学家宣布探测到了引力波,证实了爱因斯坦的预测,弥补了爱因斯坦广义相对论中缺失的最后一块“拼图”。双星的运动是引力波的来源之一,假设宇宙中有一双星系统由、两颗星体组成,这两颗星体绕它们连线中的某一点在万有引力作用做匀速圆周运动,测得的周期为,、两颗星体的距离为,、两颗星体的轨道半径之差为(星的轨道半径大于星的),则( )‎ A. 星的周期为 ‎ B. 星的线速度大小为 C. 、两颗星体的轨道半径之比为 ‎ D. 、两颗星体的质量之比为 ‎【答案】B ‎【解析】‎ ‎【分析】‎ ‎【详解】A.、两颗星体是围绕同一点运动的,故周期相同,选项A错误;‎ BC.由,,得,,所以,‎ 星的线速度,选项B正确,选项C错误;‎ D.由,得,选项D错误。‎ 故选B。‎ ‎4.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3‎ 倍,某时刻,航天站使登月器减速分离,登月器沿如图所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回,当第一次回到分离点时恰与航天站对接,登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g,月球半径为R,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为(  )‎ A. 4.7‎π B. 3.6π ‎ C. 1.7π D. 1.4π ‎【答案】A ‎【解析】‎ ‎【详解】设登月器和航天飞机在半径3R的轨道上运行时的周期为T,因其绕月球作圆周运动,所以应用牛顿第二定律有,解得:‎ 在月球表面的物体所受重力近似等于万有引力,有:,所以有 ‎ 设登月器在小椭圆轨道运行的周期是T1,航天飞机在大圆轨道运行的周期是T2.对登月器和航天飞机依据开普勒第三定律分别有: ,为使登月器仍沿原椭圆轨道回到分离点与航天飞机实现对接,登月器可以在月球表面逗留的时间t应满足 ‎(其中)联立解得:(其中)‎ 当n=1时,登月器可以在月球上停留的时间最短,即为 A. 4.7‎π与分析相符,故A项与题意相符;‎ B. 3.6π与分析不相符,故B项与题意不相符;‎ C. 1.7π与分析不相符,故C项与题意不相符;‎ D. 1.4π与分析不相符,故D项与题意不相符.‎ ‎5.人类对自然的探索远至遥远的太空,深至地球内部。若地球半径为R,把地球看做质量分布均匀的球体。某地下探测器P的质量为m,深入地面以下h处,假设h以上的地球球壳物质对探测器P的引力为零;另一太空探测器Q质量也为m,围绕地球做圆周运动,轨道距离地面高度为d,则地球对太空探测器Q和地下探测器P的引力之比为(  )‎ A. B. ‎ C. D. ‎ ‎【答案】B ‎【解析】‎ ‎【详解】设地球的密度为ρ,地球的质量为,所以地球对太空探测器Q的引力 ‎,根据题意有,质量分布均匀的球壳对壳内物体的引力为零,则深入地下为h处探测器P受到地球的万有引力即为半径等于(R-h)的球体在其表面产生的万有引力,此时,故探测器P受到的引力,所以有,故B正确,ACD错误。 故选B。‎ ‎6.一个质量为m的小球以初速v0水平抛出做平抛运动,那么,在前t秒内重力对它做功的平均功率及在t秒末重力做功的瞬时功率P分别为(t秒末小球未着地)(  )‎ A. =mg(v0+gt),P=mg(+g2t2)‎ B. =mg2t2,P=mg(+g2t2)‎ C. =mg2t,P=mg2t D. =mg2t,P=2mg2t ‎【答案】C ‎【解析】‎ ‎【详解】前ts内的位移为:,则重力做功的平均功率为:,ts末的瞬时速度为:v=gt,则重力的瞬时功率为:P=mgv=mg•gt=mg2t,故C正确,ABD错误。‎ 故选:C。‎ ‎7.我国“北斗二代”计划在2020年前发射35颗卫星,形成全球性的定位导航系统,比美国GPS多5颗.多出的这5颗是相对地面静止的高轨道卫星(以下简称“静卫”),其他的有27颗中轨道卫星(以下简称“中卫”)的轨道高度为“静卫”轨道高度的.下列说法正确的是(  )‎ A. “中卫”的线速度介于‎7.9km/s和‎11.2km/s之间 B. “静卫”的轨道必须是在赤道上空 C. 如果质量相同,“静卫”与“中卫”的动能之比为3∶5‎ D. “静卫”的运行周期小于“中卫”的运行周期 ‎【答案】B ‎【解析】‎ 试题分析:7.‎9 km/s是地球卫星的最大速度,所以“中卫”的线速度小于7.‎9 km/s,故A错误;同步轨道卫星轨道只能在赤道上空,则“静卫”的轨道必须是在赤道上空,故B正确;根据万有引力提供向心力得:,解得:,如果质量相同,动能之比等于半径的倒数比,“中卫”轨道高度为静止轨道高度的,地球半径相同,所以“中卫”轨道半径不是静止轨道半径的,则“静卫”与“中卫”的动能之比不是3:5,故C错误;根据得:,则半径越大周期越大,所以“静卫”的运行周期大于“中卫”的运行周期,故D错误.故选B.‎ ‎8.质量为m小球,从离地面h高处以初速度v0‎ 竖直上抛,小球上升到最高点时离抛出点距离为H,若选取最高点为零势能面,不计空气阻力,则( )‎ A. 小球在抛出点(刚抛出时)的机械能为零 B. 小球落回抛出点时的机械能−mgH C. 小球落到地面时的动能为 D. 小球落到地面时的重力势能为−mgh ‎【答案】A ‎【解析】‎ ‎【详解】ABD项:选取最高点位置为零势能参考位置,小球上升到最高点时,动能为0,势能也为0,所以在最高点的机械能为0,在小球运动过程中只有重力做功,机械能守恒,故任意位置的机械能都为0,所以小球落回到抛出点时的机械能是0,故A正确,B错误,D错误;‎ C项:从抛出点到落地过程中,只有重力做功,由动能定理得:,解得,落地时的动能,故C错误.‎ ‎9.在同一高度将质量相等的两球以大小相等的初速度分别竖直上抛和竖直 下抛,则下列说法中正确的是( )‎ A. 两球落地时重力的瞬时功率相同 B. 在运动过程中,两球的加速度不同 C. 在整个运动过程中,两球重力的平均功率相同 D. 在整个运动过程中,两球的速度变化量相同 ‎【答案】A ‎【解析】‎ ‎【详解】A. 两球运动过程中,机械能守恒,初速度大小相等,则落地时速度大小相等、方向相同,重力的瞬时功率相同,故A正确。‎ B. 小球运动过程中,只受重力,加速度相同,故B错误;‎ C. 两球运动时间不等,重力做功相等,则平均功率不等,故C错误;‎ D. 两球运动时间不等,加速度相等,速度变化量不等,故D错误。‎ ‎10. 如图所示,质量为m的物体静止在倾角为θ 的粗糙斜面上,当斜面沿水平方向向右匀速移动了距离s时,物体m相对斜面静止,则下列说法中不正确的是( )‎ A. 弹力对物体m做正功 B. 合力对物体m做功为零 C. 摩擦力对物体m做正功 D. 重力对物体m做功为零 ‎【答案】C ‎【解析】‎ 试题分析:分析物体的受力情况:重力mg、弹力N和摩擦力f,作出力图如图.‎ 由图看出,弹力N与位移s的夹角小于90°,则弹力对物体m做正功.故A正确.物体匀速运动时,合力为零,合力对物体m做功为零.故B正确.摩擦力f与位移的夹角为钝角,所以摩擦力对物体m做功不为零,做负功.故C错误.物体在水平方向移动,在重力方向上没有位移,所以重力对物体m做功为零.故D正确.本题选错误的,故选C.‎ 二、单项选择(每小题4分,共20分。)‎ ‎11.通过电脑制作卫星绕地球做圆周运动的动画,卫星绕地球运动的轨道半径为R,线速度为v,周期为T。下列哪些设计符合事实(  )‎ A. 若卫星半径从R变为2R,则卫星运行周期从T变为 B. 若卫星半径从R变为2R,则卫星运行线速度从v变为 C. 若卫星运行线速度从v变为,则卫星运行周期从T变为2T D. 若卫星运行周期从T变为8T,则卫星半径从R变为4R ‎【答案】D ‎【解析】‎ ‎【详解】A.根据万有引力定律和牛顿第二定律 解得 当卫星半径从R变为2R时,T变为 ,故A错误;‎ B.又由于 解得 卫星半径从R变为2R时,则卫星运行线速度从v变为,故B错误;‎ CD.由上式可知,若卫星运行线速度从v变为,卫星的轨道半径由R变为4R,又由 可知,运动周期由T变为8T,故C错误,D正确。‎ ‎12.暗物质是二十一世纪物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在‎2015年12月17日成功发射了一颗被命名为“悟空”的暗物质探测卫星.已知“悟空”在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t(t小于其运动周期),运动的弧长为s,与地球中心连线扫过的角度为β(弧度),引力常量为G,则下列说法正确的是 A. “悟空”的向心加速度大于地球同步卫星的向心加速度 B. “悟空”的线速度大于第一宇宙速度 C. “悟空”的环绕周期为 D. “悟空”的质量为 ‎【答案】AC ‎【解析】‎ ‎【详解】A.“悟空”到地球球心的距离小于同步卫星到地球球心的距离,由公式可知“悟空”的向心加速度大于地球同步卫星的向心加速度,故A正确;‎ B.第一宇宙速度指的是环绕地球表面转动时的速度,取“悟空”为研究对象,万有引力提供向心力,由牛顿第二定律可得,,因“悟空”轨道半径大,其线速小于第一宇宙速度,故B错误;‎ C.设“悟空”的环绕周期为T,由,可得T=,故C正确;‎ D.设地球质量为M,“悟空”质量为m,由牛顿第二定律可得,由角速的定义式可得, 联立可得地球的质量为M=,无法计算出“悟空”的质量,故D错误.‎ ‎13.如图,轻弹簧竖直放置,下端固定在水平地面上,一质量为 m 的小球,从离弹簧上端高 h 处由静止释放。某同学在研究小球落到弹簧上后 继续向下运动到最低点的过程,他以小球开始下落的位置为原点,沿竖直向下方向建立坐标轴 Ox, 做出小球所受弹力 F 大小随小球下落的位置坐标x 的变化关 系如图所示,不计空气阻力,重力加 速度为 g。以下判断正确的是( )‎ A. 当 x=h+x0,小球的重力势能与弹簧的弹性势 能之和最大 B. 小球落到弹簧上向下运动到最低点的过程中,速度先减小后增大 C. 小球落到弹簧上向下运动到最低点的过程中,加速度先减小后增大 D. 小球动能的最大值为mgh+‎ ‎【答案】CD ‎【解析】‎ ‎【详解】A. 根据乙图可知,当x=h+x0‎ ‎,小球的重力等于弹簧的弹力,此时小球具有最大速度,以弹簧和小球组成的系统,机械能守恒可知,重力势能与弹性势能之和最小,故A错误;‎ BC. 小球刚落到弹簧上时,弹力小于重力,小球加速度向下,速度增大,随弹力的增加,加速度减小,当弹力等于重力时加速度为零,此时速度最大;然后向下运动时弹力大于重力,小球的加速度向上且逐渐变大,小球做减速运动直到最低点,则小球落到弹簧上向下运动到最低点的过程中,速度先增大后减小,加速度先减小后增大,故B错误C正确;‎ D. 小球达到最大速度的过程中,根据动能定理可知:,故小球动能的最大值为,故D正确。‎ 故选CD。‎ ‎14.如图所示,水平地面上一辆汽车正通过一根跨过定滑轮不可伸长的绳子提升竖井中的重物,不计绳重及滑轮的摩擦,在汽车向右以v0匀速前进的过程中,以下说法中正确的是(  )‎ A. 当绳与水平方向成θ角时,重物上升的速度为 B. 当绳与水平方向成θ角时,重物上升的速度为v0cosθ C. 汽车的输出功率将保持恒定 D. 被提起重物动能不断增大 ‎【答案】BD ‎【解析】‎ ‎【详解】AB.将汽车的速度v0沿绳子的方向和垂直于绳子的方向进行正交分解,如图所示,则有重物上升的速度,故A错误,B正确;‎ C.汽车向右匀速前进的过程中,角度θ逐渐减小,cosθ增大,所以v物增大,重物加速上升,克服重力做功的功率增大,根据能量守恒定律知,汽车的输出功率增大,故C错误;‎ D.由可知,汽车向右匀速前进的过程中,角度θ逐渐减小,cosθ增大,所以v物增大,动能不断增大,故D正确。‎ 故选BD。‎ ‎15.如图所示,某物体在运动过程中,受竖直向下的重力和水平方向的风力,某段时间内,重力对物体做功4J,风力对物体做功3J,则以下说法中正确的是:(  )‎ A. 外力对物体做的总功为5J B. 物体的动能增加了7J C. 物体的机械能增加了3J D. 物体的重力势能增加了4J ‎【答案】BC ‎【解析】‎ ‎【详解】A.功是标量,故外力做功为,故A错误;‎ B.根据动能定理可知,故动能的增加量为,故B正确;‎ C.风力对物体做正功,故物体的机械能增加量等于风力所做的功,故有,故C正确;‎ D.由于重力做正功,故物体的重力势能减小,减小量为4J,故D错误。‎ 故选BC。‎ 第II卷(非选择题)‎ 三、实验题 ‎16.在“验证机械能守恒定律”的实验中,A、B、C三名学生分别用同一装置打出三条纸带,量出各条纸带上第一、第二两点间的距离分别为‎0.17cm,‎0.18cm,‎0.27cm,打点计时器所用电源频率为50Hz,当地的重力加速度的值为‎9.80m/s2,测得所用重物的质量为‎1.0kg,可看出其中肯定有一个同学在操作上的错误,错误操作是_______‎ 同学。若按实验要求正确地选择出纸带进行测量,量得连续三点A、B、C到第一个点的距离如图所示(相邻计数点间的时间间隔为0.02s),那么:‎ ‎(1)打点计时器打下计数点B时,物体的速度vB=_______;‎ ‎(2)从起点O到打下计数点B的过程中重力势能减小量是=________,此过程中物体动能的增加量=________(g取‎9.8m/s2);‎ ‎(3)通过计算,数值上_____(填“>”、“=”、“<”),这是因为______________。(结果保留三位有效数字)‎ ‎【答案】 C (1). ‎0.98m/s (2). 0.491J 0.480J ‎ ‎ (3). > 运动过程存在阻力,在误差允许的范围内机械能守恒 ‎【解析】‎ ‎【详解】第1、2个点的距离,故操作错误的为C同学。‎ ‎(1)B点的瞬时速度等于AC段的平均速度,则有 ‎(2)从起点O到打下计数点B的过程中重力势能减少量是 动能的增加量为 ‎(3)通过计算,数值上 这是因为实验中有摩擦和空气阻力,即运动过程中存在阻力;但在实验误差允许范围内,机械能守恒。‎ ‎17.卡文迪许利用如图所示的扭称实验装置测量了引力常量:‎ ‎(1)横梁一端固定有一质量为m半径为r的均匀铅球A,旁边有一质量为m,半径为r的相同铅球B,A、B两球表面的最近距离L,已知引力常量为G,则A、B两球间的万有引力大小为F=_________.‎ ‎(2)在下图所示的几个实验中,与“卡文迪许扭秤实验”中测量微小量的思想方法最相近的是__________.(选填“甲”“乙”或“丙”)‎ ‎(3)引力常量的得出具有重大意义,比如:_____________________.(说出一条即可)‎ ‎【答案】 (1). (2). 乙 (3). 引力常量的普适性证明了万有引力定律的正确性(或:引力常量的得出使得可以定量计算万有引力的大小;引力常量的得出使得人们可以方便地计算出地球的质量)‎ ‎【解析】‎ ‎【详解】(1)根据万有引力公式可得 ‎ ‎(2)由于引力较小,所以卡文迪许设计此实验时运用了放大法的思想,所以利用微小测量方法放大的思想的是乙图 ‎(3)引力常量的得出具有重大意义,比如:引力常量的普适性证明了万有引力定律的正确性(或:引力常量的得出使得可以定量计算万有引力的大小;引力常量的得出使得人们可以方便地计算出地球的质量)‎ 故本题答案是:(1). (2). 乙 (3). 引力常量的普适性证明了万有引力定律的正确性(或:引力常量的得出使得可以定量计算万有引力的大小;引力常量的得出使得人们可以方便地计算出地球的质量)‎ 四、解答题 ‎18.额定功率 P=125kW 的汽车在平直公路上行驶,汽车的质量 m=2.5×,在水平面上行驶时所受的阻力大小恒为 ‎ ‎(1)求汽车所能达到的最大速度 ‎ ‎(2)若汽车以大小 的加速度由静止开始匀加速行驶,求匀加速阶段可持 续的时间 t.‎ ‎【答案】(1)(2)‎ ‎【解析】‎ ‎【详解】(1)当汽车的牵引力等于阻力时,速度最大,根据瞬时功率公式可得:‎ 解得:‎ ‎(2)设匀加速运动过程中的牵引力的大小为,根据牛顿第二定律可得:‎ 当汽车的功率达到额定功率时,匀加速过程结束,设此时的速度为:‎ 由运动学公式可得:‎ 联立以上方程解得:‎ ‎19.如图所示,质量为m=‎3kg的物体静止在水平地面上,受到与水平地面夹角为θ=37°、大小 F=20N的拉力作用,物体移动的距离l=‎5m,物体与地面间的动摩擦因数,g取 ‎10 m/s2。求:‎ ‎(1)拉力F所做的功W1;‎ ‎(2)摩擦力Ff所做的功W2;‎ ‎(3)重力G所做的功W3。‎ ‎【答案】(1)80J;(2)-27J;(3)0。‎ ‎【解析】‎ ‎【详解】(1)根据功的定义可知拉力的功 ‎(2)对物体受力分析可知地面对物体的支持力 根据牛顿第三定律可知物体对地面的压力为18N;所以滑动摩擦力 故摩擦力所做功 ‎(3)重力与位移相互垂直,故重力做功0。‎ ‎20.‎2005年10月12日9时整,我国自行研制的“神舟六号”载人飞船顺利升空,飞行了115小时32分,绕地球76圈,于17日4时33分在内蒙古主着陆场成功着陆,返回舱完好无损,宇航员费俊龙、聂海胜自主出舱,“神舟六号”载人航天飞行圆满成功。飞船点火竖直升空时,宇航员感觉“超重感比较强”,仪器显示他对座舱的最大压力等于他体重的5倍;飞船升空后,先沿椭圆轨道运行5圈再变轨,在距地面某一高度的圆形轨道上飞行,宇航员在舱内感觉到自己“漂浮起来”。‎ ‎(1)试简要分析宇航员在舱内感觉到自己“漂浮起来”的原因;‎ ‎(2)求火箭升空时,火箭最大加速度;(设火箭升空时的重力加速度为g)‎ ‎(3)若已知飞船在圆形轨道上飞行n圈所用的时间为t,距地面高度为H,地球半径为R,万有引力常量为G,求地球的质量M。‎ ‎【答案】(1)见解析;(2)‎4g;(3)。‎ ‎【解析】‎ ‎【详解】(1)航天员感觉到要漂浮起来的原因是航天员现在处于完全失重状态;‎ ‎(2)由题意知他对座舱的最大压力等于他体重的5倍,根据牛顿第三定律可知座舱对他的最大支持力是重力的5倍,即F=5mg,根据牛顿第二定律有 解得火箭的最大加速度 ‎(3)由题意知飞船在圆形轨道上飞行时根据万有引力提供向心力有 由于飞行n圈所用的时间为t,故飞行周期为 联立可解得 ‎ ‎
查看更多

相关文章

您可能关注的文档