- 2021-05-31 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2019届一轮复习人教版抛体运动学案
第2讲 抛体运动 一、平抛运动 1.定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下的运动. 2.性质:平抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动;(2)竖直方向:自由落体运动. 4.基本规律(如图1) 图1 (1)位移关系 (2)速度关系 自测1 一个物体以初速度v0水平抛出,落地时速度为v,则运动时间为(不计空气阻力)( ) A. B. C. D. 答案 C 自测2 (多选)某人向放在水平地面上正前方的小桶中水平抛球,结果球划着一条弧线飞到小桶的前方,如图2所示.不计空气阻力,为了能把小球抛进小桶中,则下次再水平抛球时,可能做出的调整为( ) 图2 A.减小初速度,抛出点高度不变 B.增大初速度,抛出点高度不变 C.初速度大小不变,降低抛出点高度 D.初速度大小不变,提高抛出点高度 答案 AC 二、斜抛运动 1.定义:将物体以初速度v0斜向上方或斜向下方抛出,物体只在重力作用下的运动. 2.性质:斜抛运动是加速度为g的匀变速曲线运动,运动轨迹是抛物线. 3.研究方法:运动的合成与分解 (1)水平方向:匀速直线运动;(2)竖直方向:匀变速直线运动. 4.基本规律(以斜上抛运动为例,如图3所示) 图3 (1)水平方向:v0x=v0cos θ,F合x=0; (2)竖直方向:v0y=v0sin θ,F合y=mg. 自测3 有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,如图4所示,①为A的运动轨迹,则B的运动轨迹是( ) 图4 A.① B.② C.③ D.④ 答案 A 解析 物体做斜抛运动的轨迹只与初速度的大小和方向有关,而与物体的质量无关,A、B两小球的运动轨迹相同,故A项正确. 命题点一 平抛运动基本规律的应用 1.飞行时间 由t=知,时间取决于下落高度h,与初速度v0无关. 2.水平射程 x=v0t=v0,即水平射程由初速度v0和下落高度h共同决定,与其他因素无关. 3.落地速度 v==,以θ表示落地速度与水平正方向的夹角,有tan θ==,落地速度与初速度v0和下落高度h有关. 4.速度改变量 因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt是相同的,方向恒为竖直向下,如图5所示. 图5 5.两个重要推论 (1)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图6所示,即xB=. 图6 推导: →xB= (2)做平抛运动的物体在任意时刻任意位置处,有tan θ=2tan α. 推导: →tan θ=2tan α 类型1 单个物体的平抛运动 例1 (2017·全国卷Ⅰ·15)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球网,速度较小的球没有越过球网.其原因是( ) A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 答案 C 解析 由题意知,两个乒乓球均做平抛运动,则根据h=gt2及vy2=2gh可知,乒乓球的运动时间、下降的高度及竖直方向速度的大小均与水平速度大小无关,故选项A、B、D均错误;由发出点到球网的水平位移相同时,速度较大的球运动时间短,在竖直方向下落的距离较小,可以越过球网,故C正确. 变式1 (多选)(2017·江西南昌3月模拟)如图7所示,空间有一底面处于水平地面上的正方体框架ABCD—A1B1C1D1,从顶点A沿不同方向平抛一小球(可视为质点).关于小球的运动,下列说法正确的是( ) 图7 A.落点在A1B1C1D1内的小球,落在C1点时平抛的初速度最大 B.落点在B1D1上的小球,平抛初速度的最小值与最大值之比是1∶ C.运动轨迹与AC1相交的小球,在交点处的速度方向都相同 D.运动轨迹与A1C相交的小球,在交点处的速度方向都相同 答案 ABC 解析 依据平抛运动规律有h=gt2,得飞行时间t=,水平位移x=v0,落点在A1B1C1D1内的小球,h相同,而水平位移xAC1最大,则落在C1点时平抛的初速度最大,A项正确.落点在B1D1上的小球,由几何关系可知最大水平位移xmax=L(L为正方体的棱长),最小水平位移xmin=L,据v0=x,可知平抛运动初速度的最小值与最大值之比vmin∶vmax=xmin∶xmax=1∶,B项正确.凡运动轨迹与AC1相交的小球,位移偏转角β相同,设速度偏转角为θ,由平抛运动规律有tan θ=2tan β,故θ相同,则运动轨迹与AC1相交的小球,在交点处的速度方向都相同,C项正确,同理可知D项错误. 例2 (2017·全国卷Ⅱ·17)如图8,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时,对应的轨道半径为(重力加速度大小为g)( ) 图8 A. B. C. D. 答案 B 解析 小物块由最低点到最高点的过程,由机械能守恒定律得mv2=2mgr+mv12, 小物块做平抛运动时,落地点到轨道下端的距离x=v1t, t=2,联立解得,x=2, 由数学知识可知,当r=时,x最大,故选项B正确. 变式2 如图9所示为足球球门,球门宽为L.一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点).球员顶球点的高度为h,足球做平抛运动(足球可看成质点),则( ) 图9 A.足球位移的大小x= B.足球初速度的大小v0= C.足球末速度的大小v= D.足球初速度的方向与球门线夹角的正切值tan θ= 答案 B 解析 足球位移大小为x==,A错误;根据平抛运动规律有:h=gt2 ,=v0t,解得v0=,B正确;根据动能定理mgh=mv2-mv02可得v==,C错误;足球初速度方向与球门线夹角的正切值tan θ==,D错误. 类型2 多个物体的平抛运动 1.若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动. 2.若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由物体的水平分运动和竖直高度差决定. 3.若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动. 4.两条平抛运动轨迹的相交处只是两物体的可能相遇处,两物体必须同时到达此处才会相遇. 例3 如图10所示,A、B两小球从相同高度同时水平抛出,经过时间t在空中相遇.若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为( ) 图10 A.t B.t C. D. 答案 C 解析 设A、B两小球的抛出点间的水平距离为L,分别以水平速度v1、v2抛出,经过时间t的水平位移分别为x1、x2,根据平抛运动规律有x1=v1t,x2=v2t,又x1+x2=L,则t=;若两球的抛出速度都变为原来的2倍,则两球从抛出到相遇经过的时间为t′==,故选项C正确. 变式3 在水平路面上做匀速直线运动的小车上有一固定的竖直杆,车上的三个水平支架上有三个完全相同的小球A、B、C,它们离地面的高度分别为3h、2h和h,当小车遇到障碍物P时,立即停下来,三个小球同时从支架上水平抛出,先后落到水平路面上,如图11所示,不计空气阻力,则下列说法正确的是( ) 图11 A.三个小球落地时间差与车速有关 B.三个小球落地点的间隔距离L1=L2 C.三个小球落地点的间隔距离L1查看更多