- 2021-05-28 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
专题2-5 动态平衡问题的分析方法-《奇招制胜》2017年高考物理热点+题型全突破
1.动态平衡: 指通过控制某些物理量使物体的状态发生缓慢变化。在这个过程中物体始终处于一系列平衡状态中。 2. 动态平衡特征: 一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。 3. 平衡物体动态问题分析方法: 解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。 方法一:三角形图解法。 特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。 方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。 图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。 【典例1】如图所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化? 【答案】见解析 【解析】取球为研究对象,如图甲所示,球受重力G、斜面支持力F1、挡板支持力F2。因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。F1的方向不变,但方向不变,始终与斜面垂直。F2的大小、方向均改变,随着挡板逆时针转动时,F2的方向也逆时针转动,动态矢量三角形图乙中一画出的一系列虚线表示变化的F2。由此可知,F2先减小后增大,F1随增大而始终减小。 【典例2】用绳AO、BO悬挂一个重物,BO水平,O为半圆形支架的圆心,悬点A和B在支架上。悬点A固定不动,结点O保持不动,将悬点B从图中所示位置逐渐移动到C点的过程中,分析绳OA和绳OB上的拉力的大小变化情况。 【答案】绳OA的拉力逐渐减小 绳OB的拉力先减小后增大 AO、BO上的拉力分别为TA1、TA2、TA3和TB1、TB2、TB3,如图所示, 从图中可以直观地看出,TA逐渐变小,且方向不变;而TB先变小,后变大,且方向不断改变;当TB与TA垂直时,TB最小。 (2)矢量三角形法:将O点所受三力的示意图首尾连接,构造出矢量三角形如图所示: 将悬点B从图中所示位置逐渐移动到C点的过程中,绳OB上的拉力F3与水平方向的夹角α逐渐增大,根据矢量三角形图可知绳OA的拉力F2逐渐减小,绳OB上的拉力F3先减小后增大。 【典例3】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持在原位置不动。则在这一过程中,环对杆的摩擦力Ff和环对杆的压力FN的变化情况是( ) A、Ff不变,FN不变 B、Ff增大,FN不变 C、Ff增大,FN减小 D、Ff不变,FN减小 【答案】B 以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。 由整个系统平衡可知:FN=(mA+mB)g;Ff=F。 即Ff增大,FN不变,故B正确。 方法二:相似三角形法。 特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持 垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题。 原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。 【典例4】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-1所示。现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减少,则在此过程中,拉力F及杆BO所受压力FN 的大小变化情况是( ) A.FN先减小,后增大 B.FN始终不变 C.F先减小,后增大 D.F始终不变 【答案】B 【解析】取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力FN和悬挂重物的绳子的拉力(大小为G)的作用,将FN与G合成,其合力与F等值反向,如图所示, 将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO高为H,BO长为L,绳长l,),式中G、H、L均不变,l逐渐变小,所以可知FN不变,F逐渐变小。正确答案为选项B 方法三:作辅助圆法 特点:作辅助圆法适用的问题类型可分为两种情况:①物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变。 原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。第二种情况以大小不变,方向变化的力为直径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的的力的矢量三角形,从而轻易判断各力的变化情况。 【典例5】如图所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变,物体保持静止状态,在旋转过程中,设绳OA的拉力为F1,绳OB的拉力为F2,则( )。 (A)F1先减小后增大 (B)F1先增大后减小 (C)F2逐渐减小 (D)F2最终变为零 【答案】BCD 【解析】取绳子结点O为研究对角,受到三根绳的拉力,如图甲所示 甲 乙 分别为F1、F2、F3,将三力构成矢量三角形(如图乙所示的实线三角形CDE),需满足力F3大小、方向不变,角∠ CDE不变(因为角α不变),由于角∠DCE为直角,则三力的几何关系可以从以DE边为直径的圆中找,则动态矢量三角形如图乙中一画出的一系列虚线表示的三角形。由此可知,F1先增大后减小,F2随始终减小,且转过90°时,当好为零。 【典例6】如图所示装置,两根细绳拴住一球,保持两细绳间的夹角不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力FA大小变化情况是 ,CB绳的拉力FB的大小变化情况是 。 方法四:解析法 根据物体的平衡条件列方程,在解方程时采用数学知识讨论某物理量随变量的变化关系。 特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、方向不变的问题。 原理:先正确分析物体的受力,画出受力分析图,设一个角度,利用三力平衡得到拉力的解析方程式,然后作辅助线延长绳子一端交于题中的界面,找到所设角度的三角函数关系。当受力动态变化是,抓住绳长不变,研究三角函数的变化,可清晰得到力的变化关系。 解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据自变量的变化情况及变化区间确定应变物理量的变化情况。 【典例7】如图所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G=40N,绳长L=2.5m,OA=1.5m,求绳中张力的大小,并讨论: (1)当B点位置固定,A端缓慢左移时,绳中张力如何变化? (2)当A点位置固定,B端缓慢下移时,绳中张力又如何变化? 【答案】查看更多