【物理】2018届二轮复习电场学案(全国通用)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】2018届二轮复习电场学案(全国通用)

‎【考向解读】 ‎ ‎1.静电场的性质与特点以及常见电场的分布规律问题是近几年高考的热点,分析近几年的高考命题,命题规律主要有以下几点:‎ ‎(1)以选择题形式考查电场的叠加.‎ ‎(2)以选择题形式考查等量电荷或不等量电荷的电场的分布与电场强度、电势、电势能的大小比较问题.‎ ‎(3)以选择题形式考查电场力做功与电势能的改变之间的关系.‎ ‎2.平行板电容器问题是近几年高考中时常出现的考点,分析近几年的高考命题,命题规律主要有以下几点:‎ ‎(1)一般以选择题的形式考查电容器的定义式和平行板电容器的决定式.‎ ‎(2)以选择题的形式考查极板间场强、极板间的电势、带电粒子的电势能及电容器的充放电规律等问题.‎ ‎3.带电粒子在电场中的运动问题是近几年高考的重点和热点,综合分析近几年的高考命题,对于这一考点的命题规律有以下几个方面:‎ ‎(1)利用运动的合成和分解分析带电粒子的类平抛运动,考查粒子的运动轨迹、受力情况及能量转化,多以选择题形式出现.‎ ‎(2)经常与动能定理、运动 方程、牛顿运动定律等知识相综合,以计算题的形式出现.‎ ‎【命题热点突破一】对电场性质的考查 例1. 【2017·天津卷】如图所示,在点电荷Q产生的电场中,实线MN是一条方向未标出的电场线,虚线AB是一个电子只在静电力作用下的运动轨迹。设电子在A、B两点的加速度大小分别为aA、aB,电势能分别为EpA、EpB。下列说法正确的是 A.电子一定从A向B运动 B.若aA>aB,则Q靠近M端且为正电荷 C.无论Q为正电荷还是负电荷一定有EpAaB,说明电子在M点受到的电场力较大,M点的电场强度较大,根据点电荷的电场分布可知,靠近M端为场 电荷的位置,应带正电,故B正确;无论Q为正电荷还是负电荷,一定有电势,电子电势能,电势能是标量,所以一定有EpAab>ac,va>vc>vb B.aa>ab>ac,vb>vc>va C.ab>ac>aa,vb>vc>va D.ab>ac>aa,va>vc>vb ‎【答案】D 【解析】由库仑定律可知,粒子在a、b、c三点受到的电场力的大小关系为Fb>Fc>Fa,由a=可知,ab>ac>aa,由运动轨迹可知,粒子Q的电性与P相同,受斥力作用,不论粒子从a到c,还是从c到a,在运动过程中总有排斥力与运动方向的夹角先为钝角后为锐角,即斥力先做负功后做正功,因此va>vc>vb,故D正确.‎ ‎【变式探究】 如图,在正点电荷Q的电场中有M、N、P、F四点,M、N、P为直角三角形的三个顶点,F为MN的中点,∠M=30°.M、N、P、F四点处的电势分别用φM、φN、φP、φF表示,已知φM=φN ,φP=φF,点电荷Q在M、N、P三点所在平面内,则 (  )‎ A.点电荷Q一定在MP的连线上 B.连接PF的线段一定在同一等势面上 C.将正试探电荷从P点搬运到N点,电场力做负功 D.φP大于φM ‎【解析】电场是由正点电荷产生的,所以电场线由正点电荷指向无穷远处,并且跟点电荷距离相等的点,电势相等,场强大小相等.由于φM=φN,φP=φF,所以点电荷Q到M和N的距离相等,到P和F的距离相等,即过F作MN的中垂线,然后作FP的中垂线,两中垂线的交点为点电荷Q所在的位置,由几何知识得Q在MP上,如图所示,选项A正确;点电荷形成的电场中等势面是球面,故选项B错误;正试探电荷与Q同号,所以受斥力作用,故将其从P点搬运到N点时,电场力做正功,故选项C错误;由几何关系知点电荷Q距M的距离大,距P的距离小,所以φM<φP,故选项D正确.‎ ‎ 【答案】AD ‎【感悟提升】‎ ‎1.分析电荷受电场力情况时,首先明确电场的电场线分布规律,再利用电场线的疏密分布规律或场强的叠加原理判定场强的强弱.‎ ‎2.分析电势的高低常根据电场线的指向进行判断.‎ ‎3.比较电势能的大小或分析电势能的变化,可以根据电场力做正功,电势能减小,做负功,电势能增大判断,也可根据正电荷在电势高处电势能大,负电荷在电势低处电势能大 判断.)‎ ‎【命题热点突破二】有关平行板电容器问题 例2、【2016·江苏卷】‎ 一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图1所示.容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是(  )‎ 图1‎ A.A点的电场强度比B点的大 B.小球表面的电势比容器内表面的低 C.B点的电场强度方向与该处内表面垂直 D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同 ‎【答案】C 【解析】电场线的疏密反映电场的强弱,电场线越密,电场越强,据图可知,B点的电场强度比A点大,选项A错误;沿电场线电势降低,小球表面的电势比容器内表面的高,选项B错误;容器内表面为等势面,而电场线总与等势面垂直,故B点的电场强度方向与该处内表面垂直,选项C正确.A、B两点等势,将检验电荷从A点沿不同路径移到B点,电场力做功均为零,选项D错误.‎ ‎【变式探究】如图所示,D是一个具有单向导电性的理想二极管,水平放置的平行板电容器AB内部原有带电微粒P处于静止状态.下列措施下,关于P的运动情况的说法中正确的是(  )‎ A.保持S闭合,增大A、B板间距离,P仍静止 B.保持S闭合,减小A、B板间距离,P向上运动 C.断开S后,增大A、B板间距离,P向下运动 D.若B板接地,断开S后,A板稍下移,P的电势能不变 ‎【解析】保持开关S闭合,电容器的电压不变,增大A、B 板间距离,则导致电容器的电容减小,则出现电容器的电量减小,然而二极管作用导致电容器的电量不会减小,则电容器的电量不变,由于平行板电容器的电场强度与电容器的电量、电介质及正对面积有关,所以电场强度不变,故A正确;当减小A、B板间距离,则导致电容器的电容增大,则出现电容器的电量增加,因此电场强度增大,所以P向上运动,故B正确;增大A、B板间距离,导致电容器的电容减小,由于断开开关S,则电容器的电量不变,所以极板间的电场强度不变,因此P仍处于静止,故C错误;A板稍下移,电容器的电容增大,当断开S后,则电容器的电量不变,所以电场强度也不变,由于B板接地,则P到B板的电势差不变,因此P的电势能也不变,故D正确.‎ ‎【答案】ABD ‎【命题热点突破三】带电粒子在电场中的运动 例3. 1.【2017·新课标Ⅱ卷】(20分)如图,两水平面(虚线)之间的距离为H,其间的区域存在方向水平向右的匀强电场。自该区域上方的A点将质量为m、电荷量分别为q和–q(q>0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍。不计空气阻力,重力加速度大小为g。求 ‎(1)M与N在电场中沿水平方向的位移之比;‎ ‎(2)A点距电场上边界的高度;‎ ‎(3)该电场的电场强度大小。‎ ‎【答案】(1)3:1 (2) (3)‎ ‎【解析】(1)设带电小球M、N抛出的初速度均为v0,则它们进入电场时的水平速度仍为v0;M、N在电场中的运动时间t相等,电场力作用下产生的加速度沿水平方向,大小均为a,在电场中沿水平方向的位移分别为s1和s2;由运动公式可得:‎ v0–at=0①‎ ‎②‎ ‎③‎ 联立①②③解得:④‎ ‎(2)设A点距离电场上边界的高度为h,小球下落h时在竖直方向的分速度为vy,则;‎ ‎⑤‎ ‎⑥‎ 因为M在电场中做匀加速直线运动,则 ‎⑦‎ 由①②⑤⑥⑦可得h=⑧‎ ‎(3)设电场强度为E,小球M进入电场后做直线运动,则,⑨‎ 设M、N离开电场时的动能分别为Ek1、Ek2,由动能定理:‎ ‎⑩‎ ‎⑪‎ 由已知条件:Ek1=1.5Ek2‎ 联立④⑤⑥⑦⑧⑨⑩⑪⑫解得:‎ ‎【变式探究】【2016·北京卷】如图1所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m,电荷量为e,加速电场电压为U0,偏转电场可看作匀强电场,极板间电压为U,极板长度为L,板间距为d.‎ ‎(1)忽略电子所受重力,求电子射入偏转电场时的初速度v0和从电场射出时沿垂直板面方向的偏转距离Δy;‎ ‎(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U=2.0×102 V,d=4.0×10-‎2 m,m=9.1×10-‎31 kg,e=1.6×10-‎19 C,g=‎10 m/s2.‎ ‎(3)极板间既有静电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”φG的概念,并简要说明电势和“重力势”的共同特点.‎ 图1‎ ‎【答案】(1)  (2)略 (3)略 ‎【解析】(1)根据功和能的关系,有eU0=mv 电子射入偏转电场的初速度v0= 在偏转电场中,电子的运动时间Δt==L 偏转距离Δy=a(Δt)2=.‎ ‎(2)考虑电子所受重力和电场力的数量级,有 重力G=mg~10-29 N 电场力F=~10-15 N 由于F≫G,因此不需要考虑电子所受重力.‎ ‎(3)电场中某点电势φ定义为电荷在该点的电势能Ep与其电荷量q的比值,‎ 即φ= 由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能EG与其质量m的比值,叫作“重力势”,即φG=.‎ 电势φ和重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定.‎ ‎【感悟提升】带电粒子在电场中的运动问题解题思路 ‎(1)首先分析粒子的运动规律,区分是在电场中的直线运动还是偏转运动问题.‎ ‎(2)对于直线运动问题,可根据对粒子的受力分析与运动分析,从以下两种途径进行处理:‎ ‎①如果是带电粒子在恒定电场力作用下做直线运动的问题,应用牛顿第二定律找出加速度,结合运动 公式确定带电粒子的速度、位移等.‎ ‎②如果是非匀强电场中的直线运动,一般利用动能定理研究全过程中能的转化,研究带电粒子的速度变化、运动的位移等.‎ ‎(3)‎ 对于曲线运动问题,一般是类平抛运动模型,通常采用运动的合成与分解方法处理.通过对带电粒子的受力分析和运动规律分析,应用动力 方法或功能方法求解.‎ ‎【变式探究】如图所示,虚线PQ、MN间存在如图所示的水平匀强电场,一带电粒子质量为m=2.0×10-‎11 kg、电荷量为q=+1.0×10-‎5C,从a点由静止开始经电压为U=100 V的电场加速后,垂直进入匀强电场中,从虚线MN上的某点b(图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ、MN间距离为‎20 cm,带电粒子的重力忽略不计.求:‎ ‎ (1)带电粒子刚进入匀强电场时的速率v1;‎ ‎(2)匀强电场的场强大小;‎ ‎(3)ab两点间的电势差.‎ ‎【解析】(1)由动能定理得:qU=mv 代入数据得v1=‎104 m/s.‎ ‎(2)因粒子重力不计,则进入PQ、MN间电场中后,做类平抛运动,有 粒子沿初速度方向做匀速直线运动:d=v1t 粒子沿电场方向做初速度为零的匀加速直线运动:vy=at 由题意得:tan 30°= 由牛顿第二定律得:qE=ma 联立以上相关各式并代入数据得:‎ E=×103 N/C=1.73×103 N/C.‎ ‎(3)由动能定理得:qUab=mv2=m(v+v)‎ 联立以上相关各式并代入数据得:Uab=400 V.‎ ‎【答案】(1)‎104 m/s (2)1.73×103 N/C (3)400 V ‎【命题热点突破四】带电粒子在交变电场中的运动问题 例4、如图甲所示,在y=0和y=‎2 m之间有沿着x轴方向的匀强电场,MN为电场区域的上边界,在x轴方向范围足够大.电场强度的变化如图乙所示,取x轴正方向为电场正方向,现有一个带负电的粒子,粒子的比荷为=1.0×10-‎2 C/kg,在t=0时刻以速度v0=5×‎102 m/s从O点沿y轴正方向进入电场区域,不计粒子重力.求:‎ ‎(1)粒子通过电场区域的时间;‎ ‎(2)粒子离开电场时的位置坐标;‎ ‎(3)粒子通过电场区域后沿x方向的速度大小.‎ 解析:(1)因粒子初速度方向垂直匀强电场,在电场中做类平抛运动,所以粒子通过电场区域的时间 t==4×10-3 s.‎ ‎(2)粒子沿x轴负方向先加速后减速,加速时的加速度大小为a1==‎4 m/s2,减速时的加速度大小为a2==‎2 m/s2,由运动 规律得,x方向上的位移为 x=a12+a12-a22=2×10-‎‎5 m 因此粒子离开电场时的位置坐标为(-2×10-‎5 m,‎2 m).‎ ‎(3)粒子通过电场区域后沿x方向的速度为 vx=a1-a2=4×10-‎3 m/s.‎ 答案:见解析 ‎【感悟提升】‎ ‎(1)对于带电粒子在交变电场中的直线运动,一般多以加速、匀速或减速交替出现的多运动过程的情景出现.解决的方法:①根据力与运动的关系分析带电粒子一个变化周期内相关物理量的变化规律.②借助运动图象进行运动过程分析,找出每一运动过程(或阶段)中相关物理量间的关系,进行归纳、总结、推理,寻找带电粒子的运动规律.‎ ‎(2)对于带电粒子在交变电场中的曲线运动,解决的方法仍然是应用运动的合成与分解的方法,把曲线运动分解为两个直线运动,然后应用动力 或功能关系加以解决.‎ ‎【高考真题解读】‎ ‎1.【2017·江苏卷】如图所示,三块平行放置的带电金属薄板、、中央各有一小孔,小孔分别位于、、点.由点静止释放的电子恰好能运动到点.现将板向右平移到点,则由点静止释放的电子 ‎(A)运动到点返回 ‎(B)运动到和点之间返回 ‎(C)运动到点返回 ‎(D)穿过点 ‎【答案】A ‎【解析】设A、B板间的电势差为U1,B、C板间的电势差为U2,板间距为d,电场强度为E,第一次由O点静止释放的电子恰好能运动到P点,根据动能定理得:qU1=qU2=qEd,将C板向右移动,B、C板间的电场强度,E不变,所以电子还是运动到P点速度减小为零,然后返回,故A正确;BCD错误.‎ ‎2.【2017·天津卷】如图所示,在点电荷Q产生的电场中,实线MN是一条方向未标出的电场线,虚线AB是一个电子只在静电力作用下的运动轨迹。设电子在A、B两点的加速度大小分别为aA、aB,电势能分别为EpA、EpB。下列说法正确的是 A.电子一定从A向B运动 B.若aA>aB,则Q靠近M端且为正电荷 C.无论Q为正电荷还是负电荷一定有EpAaB,说明电子在M点受到的电场力较大,M点的电场强度较大,根据点电荷的电场分布可知,靠近M端为场 电荷的位置,应带正电,故B正确;无论Q为正电荷还是负电荷,一定有电势,电子电势能,电势能是标量,所以一定有EpA0)的带电小球M、N先后以相同的初速度沿平行于电场的方向射出。小球在重力作用下进入电场区域,并从该区域的下边界离开。已知N离开电场时的速度方向竖直向下;M在电场中做直线运动,刚离开电场时的动能为N刚离开电场时动能的1.5倍。不计空气阻力,重力加速度大小为g。求 ‎(1)M与N在电场中沿水平方向的位移之比;‎ ‎(2)A点距电场上边界的高度;‎ ‎(3)该电场的电场强度大小。‎ ‎【答案】(1)3:1 (2) (3)‎ ‎【解析】(1)设带电小球M、N抛出的初速度均为v0,则它们进入电场时的水平速度仍为v0;M、N在电场中的运动时间t相等,电场力作用下产生的加速度沿水平方向,大小均为a,在电场中沿水平方向的位移分别为s1和s2;由运动公式可得:‎ v0–at=0①‎ ‎②‎ ‎③‎ 联立①②③解得:④‎ ‎(2)设A点距离电场上边界的高度为h,小球下落h时在竖直方向的分速度为vy,则;‎ ‎⑤‎ ‎⑥‎ 因为M在电场中做匀加速直线运动,则 ‎⑦‎ 由①②⑤⑥⑦可得h=⑧‎ ‎(3)设电场强度为E,小球M进入电场后做直线运动,则,⑨‎ 设M、N离开电场时的动能分别为Ek1、Ek2,由动能定理:‎ ‎⑩‎ ‎⑪‎ 由已知条件:Ek1=1.5Ek2‎ 联立④⑤⑥⑦⑧⑨⑩⑪⑫解得:‎ ‎1.【2016·全国卷Ⅱ】如图1所示,P是固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q在P的电场中运动.运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别为aa、ab、ac,速度大小分别为va、vb、vc,则(  )‎ 图1‎ A.aa>ab>ac,va>vc>vb B.aa>ab>ac,vb>vc>va C.ab>ac>aa,vb>vc>va D.ab>ac>aa,va>vc>vb ‎【答案】D 【解析】由库仑定律可知,粒子在a、b、c三点受到的电场力的大小关系为Fb>Fc>Fa,由a=可知,ab>ac>aa,由运动轨迹可知,粒子Q的电性与P相同,受斥力作用,不论粒子从a到c,还是从c到a ‎,在运动过程中总有排斥力与运动方向的夹角先为钝角后为锐角,即斥力先做负功后做正功,因此va>vc>vb,故D正确.‎ ‎2.【2016·浙江卷】如图11所示,两个不带电的导体A和B,用一对绝缘柱支持使它们彼此接触.把一带正电荷的物体C置于A附近,贴在A、B下部的金属箔都张开(  )‎ 图11‎ A.此时A带正电,B带负电 B.此时A电势低,B电势高 C.移去C,贴在A、B下部的金属箔都闭合 D.先把A和B分开,然后移去C,贴在A、B下部的金属箔都闭合 ‎【答案】C 【解析】由感应起电可知,近端感应出异种电荷,故A带负电,B带正电,选项A错误;处于静电平衡状态下的导体是等势体,故A、B电势相等,选项B错误;先移去C,则A、B两端的等量异种电荷又重新中和,而先分开A、B,后移走C,则A、B两端的等量异种电荷就无法重新中和,故选项C正确,选项D错误.‎ ‎3.【2016·浙江卷】如图15所示,把A、B两个相同的导电小球分别用长为‎0.10 m的绝缘细线悬挂于OA和OB两点.用丝绸摩擦过的玻璃棒与A球接触,棒移开后将悬点OB移到OA点固定.两球接触后分开,平衡时距离为‎0.12 m.已测得每个小球质量是8.0×10-‎4 kg,带电小球可视为点电荷,重力加速度g取‎10 m/s2,静电力常量k=9.0×109 N·m2/C2,则(  )‎ 图15‎ A.两球所带电荷量相等 B.A球所受的静电力为1.0×10-2 N C.B球所带的电荷量为4×10-‎‎8 C D.A、B两球连线中点处的电场强度为0‎ ‎【答案】ACD 【解析】由接触起电的电荷量分配特点可知,两相同金属小球接触后带上等量同种电荷,选项A正确;对A受力分析如图所示,有=,而F库=k,得F库=6×10-3 N,q=4×10-‎8 C,选项B错误,选项C正确;等量同种电荷连线的中点电场强度为0,选项D正确.‎ ‎4.【2016·全国卷Ⅲ】关于静电场的等势面,下列说法正确的是(  )‎ A.两个电势不同的等势面可能相交 B.电场线与等势面处处相互垂直 C.同一等势面上各点电场强度一定相等 D.将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功 ‎【答案】B 【解析】静电场中的电场线不可能相交,等势面也不可能相交,否则的话会出现一个点有两个电场强度和两个电势值的矛盾,A错误;由WAB=qUAB可知,当电荷在等势面上移动时,电荷的电势能不变,如果电场线不与等势面垂直,那么电荷将受到电场力,在电荷运动时必然会做功并引起电势能变化,这就矛盾了,B正确;同一等势面上各点电势相等,但电场强度不一定相等,C错误;对于负电荷,q<0,从电势高的A点移到电势低的B点,UAB>0,由电场力做功的公式WAB=qUAB可知WAB<0,电场力做负功,D错误.‎ ‎5.【2016·江苏卷】一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图1所示.容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是(  )‎ 图1‎ A.A点的电场强度比B点的大 B.小球表面的电势比容器内表面的低 C.B点的电场强度方向与该处内表面垂直 D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同 ‎【答案】C 【解析】电场线的疏密反映电场的强弱,电场线越密,电场越强,据图可知,B点的电场强度比A点大,选项A错误;沿电场线电势降低,小球表面的电势比容器内表面的高,选项B错误;容器内表面为等势面,而电场线总与等势面垂直,故B点的电场强度方向与该处内表面垂直,选项C正确.A、B两点等势,将检验电荷从A点沿不同路径移到B点,电场力做功均为零,选项D错误.‎ ‎6..【2016·全国卷Ⅰ】一平行板电容器两极板之间充满云母介质,接在恒压直流电 上,若将云母介质移出,则电容器(  )‎ A.极板上的电荷量变大,极板间的电场强度变大 B.极板上的电荷量变小,极板间的电场强度变大 C.极板上的电荷量变大,极板间的电场强度不变 D.极板上的电荷量变小,极板间的电场强度不变 ‎【答案】D 【解析】由平行板电容器电容的决定式C=,将云母介质移出,电容C减小,而两极板的电压U恒定,由Q=CU,极板上的电荷量Q变小,又由E=可得板间电场强度与介质无关,大小不变,选项D正确.‎ ‎7.【2016·全国卷Ⅰ】现代质谱仪可用 分析比质子重很多倍的离子,其示意图如图1所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原 的12倍.此离子和质子的质量比约为(  )‎ 图1‎ A.11 B.12‎ C.121 D.144‎ ‎【答案】D 【解析】粒子在电场中加速,设离开加速电场的速度为v,则qU=mv2,粒子进入磁场做圆周运动,半径r==,因两粒子轨道半径相同,故离子和质子的质量比为 ‎144,选项D正确.‎ ‎8.【2016·全国卷Ⅱ】阻值相等的四个电阻、电容器C及电池E(内阻可忽略)连接成如图1所示电路.开关S断开且电流稳定时,C所带的电荷量为Q1;闭合开关S,电流再次稳定后,C所带的电荷量为Q2.Q1与Q2的比值为(  )‎ 图1‎ A. B. C. D. ‎【答案】C 【解析】由已知条件及电容定义式C=可得:Q1=U‎1C,Q2=U‎2C,则=.‎ S断开时等效电路如图甲所示 甲 U1=·E×=E;‎ S闭合时等效电路如图乙所示,‎ 乙 U2=·E=E,则==,故C正确.‎ ‎8.【2016·北京卷】如图1所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m,电荷量为e,加速电场电压为U0,偏转电场可看作匀强电场,极板间电压为U,极板长度为L,板间距为d.‎ ‎(1)忽略电子所受重力,求电子射入偏转电场时的初速度v0和从电场射出时沿垂直板面方向的偏转距离Δy;‎ ‎(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U=2.0×102 V,d=4.0×10-‎2 m,m=9.1×10-‎31 kg,e=1.6×10-‎19 C,g=‎10 m/s2.‎ ‎(3)极板间既有静电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”φG的概念,并简要说明电势和“重力势”的共同特点.‎ 图1‎ ‎【答案】(1)  (2)略 (3)略 ‎【解析】(1)根据功和能的关系,有eU0=mv 电子射入偏转电场的初速度v0= 在偏转电场中,电子的运动时间Δt==L 偏转距离Δy=a(Δt)2=.‎ ‎(2)考虑电子所受重力和电场力的数量级,有 重力G=mg~10-29 N 电场力F=~10-15 N 由于F≫G,因此不需要考虑电子所受重力.‎ ‎(3)电场中某点电势φ定义为电荷在该点的电势能Ep与其电荷量q的比值,‎ 即φ= 由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能EG与其质量m的比值,叫作“重力势”,即φG=.‎ 电势φ和重力势φG都是反映场的能的性质的物理量,仅由场自身的因素决定.‎ ‎9.【2016·天津卷】如图1所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板间有一个固定在P点的点电荷,以E表示两板间的电场强度,Ep表示点电荷在P点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则(  )‎ 图1‎ A.θ增大,E增大 B.θ增大,Ep不变 C.θ减小,Ep增大 D.θ减小,E不变 ‎【答案】D 【解析】保持下极板不动,上极板向下移动一小段距离后,由C=可知电容器的电容变大,由于Q不变,由C=可知U减小,故静电计的指针偏角变小;电场强度E===不变;由于下极板不动,电场强度E不变,所以P点的电势没有发生改变,故点电荷在P点的电势能不变,A、B、C错误,D正确.‎ ‎10.【2016·四川卷】中国 院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器.加速器是人类揭示物质本 的关键设备,在放射治疗、食品安全、材料 等方面有广泛应用.‎ 如图1所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电 的两极.质子从K点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变.设质子进入漂移管B时速度为8×‎106 m/s,进入漂移管E时速度为1×‎107 m/s,电 频率为1×107 Hz,漂移管间缝隙很小,质子在每个管内运动时间视为电 周期的.质子的荷质比取1×‎108 C/kg.求:‎ ‎(1)漂移管B的长度;‎ ‎(2)相邻漂移管间的加速电压.‎ 图1‎ ‎【答案】(1)‎0.4 m (6)6×104 V ‎【解析】(1)设质子进入漂移管B的速度为vB,电 频率、周期分别为f、T,漂移管B的长度为L,则 T= L=vB· 联立①②式并代入数据得L=‎‎0.4 m ‎(2)设质子进入漂移管E的速度为vE,相邻漂移管间的加速电压为U,电场对质子所做的功为W.质子从漂移管B运动到E电场做功W′,质子的电荷量为q、质量为m,则 W=qU ④‎ W′=3W ⑤‎ W′=mv-mv ⑥‎ 联立④⑤⑥式并代入数据得 U=6×104 V ⑦‎ ‎11.【2016·全国卷Ⅰ】如图1所示,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P的竖直线对称.忽略空气阻力.由此可知(  )‎ 图1‎ A.Q点的电势比P点高 B.油滴在Q点的动能比它在P点的大 C.油滴在Q点的电势能比它在P点的大 D.油滴在Q点的加速度大小比它在P点的小 ‎【答案】AB 【解析】油滴做类斜抛运动,加速度恒定,选项D错误;合力竖直向上,且电场力Eq竖直向上,Eq>mg,电场方向竖直向下,P点电势最低,负电荷在P 点电势能最大,选项A正确,选项C错误;若粒子从Q点运动到P点,则合力做负功,动能减小,P点的动能最小,选项B正确.‎ ‎12.【2016·全国卷Ⅲ】某同 用图1中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属棒置于导轨上且与两导轨垂直.‎ 图1‎ ‎(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.‎ ‎(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:‎ A.适当增加两导轨间的距离 B.换一根更长的金属棒 C.适当增大金属棒中的电流 其中正确的是________(填入正确选项前的标号).‎ ‎ 【答案】(1)连线如图所示 ‎(2)AC ‎【解析】(1)限流式接法要求滑动变阻器接线时只能连接“一上一下”两个接线柱;磁铁N极位于上方,说明磁感线向下;开关闭合后,金属棒往右运动,说明棒受到向右的安培力;由左手定则可知,电流应垂直纸面向外(ab指向a1b1);所以应按“电 正极→开关→滑动变阻器下接线柱→滑动变阻器上接线柱→电流表→ab→a1b1→电 负极”的顺序连接回路.‎ ‎(2)由动能定理BIL·s=mv2-0可知,要增大金属棒离开导轨时的速度v,可以增大磁感应强度B、增大电流I、增大两导轨间的距离L或增大导轨的长度s ‎;但两导轨间的距离不变而只是换一根更长的金属棒后,等效长度L并不会发生改变,但金属棒的质量增大,故金属棒离开导轨时的速度v减小.‎ ‎1.(2015·江苏卷)静电现象在自然界中普遍存在,我国早在西汉末年已有对静电现象的记载,《春秋纬·考异邮》中有“玳琩吸”之说,但下列不属于静电现象的是(  )‎ A.梳过头发的塑料梳子吸起纸屑 B.带电小球移至不带电金属球附近,两者相互吸引 C.小线圈接近通电线圈过程中,小线圈中产生电流 D.从干燥的地毯上走过,手碰到金属把手时有被电击的感觉 解析:梳过头发的塑料梳子因与头发摩擦带电,能吸引轻小物体纸屑,是静电现象;带电小球移至不带电金属球附近,使不带电金属球近端感应出与带电小球异种的电荷而相互吸引,是静电现象;小线圈接近通电线圈的过程中,小线圈中产生感应电流,是电磁感应现象,不是静电现象;从干燥的地毯上走过,人与地毯摩擦产生静电,手碰到金属把手时有被电击的感觉,是放电现象,是静电现象.因此不属于静电现象的是C选项.‎ 答案:C ‎2.(2015·安徽卷)‎ 已知均匀带电的无穷大平面在真空中激发电场的场强大小为,其中σ为平面上单位面积所带的电荷量,ε0为常量.如图所示的平行板电容器,极板正对面积为S,其间为真空,带电量为Q.不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为(  )‎ A.和        B.和 C.和 D.和 解析:每个板的电荷密度σ=,每个板单独在极板间产生的电场E0== ‎,极板间的电场为两个极板单独产生的电场的矢量和,则E=2E0=,每个极板受到的静电力F=QE0=,选项D正确.‎ 答案:D ‎3.(2015·新课标全国卷Ⅰ) 如图,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM、φN、φP、φQ.一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,则(  )‎ A.直线a位于某一等势面内,φM>φQ B.直线c位于某一等势面内, φM>φN C.若电子由M点运动到Q点,电场力做正功 D.若电子由P点运动到Q点,电场力做负功 解析:根据题述一电子由M点分别运动到N点和P点的过程中,电场力所做的负功相等,可知N点和P点处于同一等势面上,直线d位于某一等势面内.根据匀强电场的特性,可知直线c位于某一等势面内.由于电子由M点运动到N点的过程中,电场力做负功,说明电场线方向从M指向N,故M点电势高于N点电势,所以选项B正确,选项A错误;由于M、Q处于同一等势面内,电子由M点运动到Q点的过程中,电场力不做功,选项C错误;电子由P点运动到Q点的过程中,电场力做正功,选项D错误.‎ 答案:B ‎4.(2015·浙江卷) 如图所示,用两根长度相同的绝缘细线把一个质量为‎0.1 kg的小球A悬挂到水平板的M、N两点,A上带有Q=3.0×10-‎6 C的正电荷.两线夹角为120°,两线上的拉力大小分别为F1和F2.A的正下方‎0.3 m处放有一带等量异种电荷的小球B,B与绝缘支架的总质量为‎0.2 kg(重力加速度取g=‎10 m/s2;静电力常量k=9.0×109 N·m2/C2,A、B球可视为点电荷),则(  )‎ A.支架对地面的压力大小为2.0 N B.两线上的拉力大小F1=F2=1.9 N C.将B水平右移,使M、A、B在同一直线上,此时两线上的拉力大小F1=1.225 N,F2=1.0 N D.将B移到无穷远处,两线上的拉力大小F1=F2=0.866 N 解析:A、B间库仑力为引力,大小为F=k=0.9 N,B与绝缘支架的总重力G2=m‎2g=2.0 N,由力的平衡可知,支架对地面的压力为1.1 N,A项错误;由于两线的夹角为120°,根据对称性可知,两线上的拉力大小相等,与A的重力和库仑力的合力大小相等,即F1=F2=G1+F=1.9 N,B项正确;将B水平右移,使M、A、B在同一直线上,此时库仑力为F′=k=0.225 N,没有B时,F1、F2上的拉力与A的重力相等,即等于1.0 N,当B水平右移,使M、A、B在同一直线上时,F2上拉力不变,则根据力的平衡可得F1=1.0 N+0.225 N=1.225 N,C项正确;将B移到无穷远处,B对A的作用力为零,两线上的拉力等于A球的重力大小,即为1.0 N,D项错误.‎ 答案:BC ‎5.(2015·山东卷)如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示.t=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~时间内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g.关于微粒在0~T时间内运动的描述,正确的是(  )‎ A.末速度大小为v0    B.末速度沿水平方向 C.重力势能减少了mgd D.克服电场力做功为mgd 解析:0~微粒做匀速直线运动,则E0q=mg.~没有电场作用,微粒做平抛运动,竖直方向上a=g.~T,由于电场作用,F=2E0q-mg=mg=ma′,a′=g,方向竖直向上.由于两段时间相等,故到达金属板边缘时,微粒速度为v0,方向水平,选项A错误,选项B正确;从微粒进入金属板间到离开,重力做功mg,重力势能减少mgd,选项C正确;由动能定理知WG-W电=0,W电=mgd,选项D错误.‎ 答案:BC ‎6.(2015·新课标全国卷Ⅱ) 如图,一质量为m、电荷量为q(q>0)的粒子在匀强电场中运动,A、B为其运动轨迹上的两点,已知该粒子在A点的速度大小为v0,方向与电场方向的夹角为60°;它运动到B点时速度方向与电场方向的夹角为30°.不计重力.求A、B两点间的电势差.‎ 解析:设带电粒子在B点的速度大小为vB.粒子在垂直于电场方向的速度分量不变,即vBsin30°=v0sin60°①‎ 由此得vB=v0②‎ 设A、B两点间的电势差为UAB,由动能定理有 qUAB=m(v-v)③‎ 联立②③式得UAB=.‎ 答案: ‎7.(2015·四川卷)如图所示,粗糙、绝缘的直轨道OB固定在水平桌面上,B端与桌面边缘对齐,A是轨道上一点,过A点并垂直于轨道的竖直面右侧有大小E=1.5×106 N/C,方向水平向右的匀强电场.带负电的小物体P电荷量是2.0×10-‎6C,质量m=‎0.25 kg,与轨道间动摩擦因数μ=0.4.P从O点由静止开始向右运动,经过0.55 s到达A点,到达B点时速度是‎5 m/s,到达空间D点时速度与竖直方向的夹角为α,且tanα=1.2.P在整个运动过程中始终受到水平向右的某外力F作用,F大小与P的速率v的关系如下表所示.P视为质点,电荷量保持不变,忽略空气阻力,取g=‎10 m/s2.求:‎ v/(m·s-1)‎ ‎0≤v≤2‎ ‎20),同时加一匀强电场,场强方向与△OAB所在平面平行.现从O点以同样的初动能沿某一方向抛出此带电小球,该小球通过了A点,到达A点时的动能是初动能的3倍;若该小球从O点以同样的初动能沿另一方向抛出,恰好通过B点,且到达B点时的动能为初动能的6倍,重力加速度大小为g.求 ‎ ‎ ‎(1)无电场时,小球到达A点时的动能与初动能的比值;‎ ‎(2)电场强度的大小和方向.‎ 解析: (1)设小球的初速度为v0,初动能为Ek0,从O点运动到A点的时间为t,令OA=d,则OB=d, 根据平抛运动的规律有 dsin60°=v0t①‎ dcos60°=gt2②‎ 又有Ek0=mv③‎ 由①②③式得Ek0=mgd④‎ 设小球到达A点时的动能为EkA,则 EkA=Ek0+mgd⑤‎ 由④⑤式得=.⑥‎ ‎(2)加电场后,小球从O点到A点和B点,高度分别降低了和,设电势能分别减小ΔEpA和ΔEpB,由能量守恒及④式得 ΔEpA=3Ek0-Ek0-mgd=Ek0⑦‎ ΔEpB=6Ek0-Ek0-mgd=Ek0⑧‎ 在匀强电场中,沿任一直线,电势的降落是均匀的.设直线OB上的M点与A点等电势,M与O点的距离为x,如图,则有=⑨‎ 解得x=d.MA为等势线,电场必与其垂线OC方向平行.设电场方向与竖直向下的方向的夹角为α,由几何关系可得 α=30°.⑩‎ 即电场方向与竖直向下的方向的夹角为30°.‎ 设场强的大小为E,有qEdcos30°=ΔEpA⑪‎ 由④⑦⑪式得E=.⑫‎ 答案:(1) (2) 方向:与竖直向下成30°夹角
查看更多

相关文章

您可能关注的文档