- 2021-05-26 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2018届一轮复习鲁科版第二章 相互作用素养提升学案
⊳思维建模能力的培养 ⊳析题破题能力的培养 1.三种模型对比 轻杆 轻绳 轻弹簧 模型图示 模型特点 形变特点 只能发生微小形变 柔软,只能发生微小形变,各处张力大小相等 既可伸长,也可压缩,各处弹力大小相等 方向特点 不一定沿杆,可以是任意方向 只能沿绳,指向绳收缩的方向 沿弹簧轴线与形变方向相反 作用效 果特点 可以提供拉力、支持力 只能提供拉力 可以提供拉力、支持力 大小突变特点 可以发生突变 可以发生突变 一般不能发生突变 2.解决三种模型问题时应注意的事项 (1)轻杆、轻绳、轻弹簧都是忽略质量的理想化模型. (2)分析轻杆上的弹力时必须结合物体的运动状态. (3)讨论轻弹簧上的弹力时应明确弹簧处于伸长还是压缩状态. 例1 (多选)如图1所示,一条细线一端与地板上的物体B(物体B质量足够大)相连,另一端绕过质量不计的定滑轮与小球A相连,定滑轮用另一条细线悬挂在天花板上的O′点,细线与竖直方向所成角度为α,则( ) 图1 A.如果将物体B在地板上向右移动一点,α角将增大 B.无论物体B在地板上左移还是右移,只要距离足够小,α角将不变 C.增大小球A的质量,α角一定减小 D.悬挂定滑轮的细线的弹力不可能等于小球A的重力 答案 AD 解析 O、A之间的细线一定沿竖直方向,如果物体B在地板上向右移动一点,O、B间的细线将向右偏转,OA与OB间的夹角将增大.OA与OB两段细线上的弹力都等于小球A的重力,其合力与悬挂定滑轮的细线的弹力大小相等、方向相反,悬挂定滑轮的细线的弹力方向(即OO′的方向)与∠AOB的平分线在一条直线上,显然物体B在地板上向右移动时α角将增大,选项A正确,B错误;增大小球A的质量,只要物体B的位置不变,则α角也不变,选项C错误;因物体B无论在地板上移动多远,∠AOB都不可能达到120°,故悬挂定滑轮的细线的弹力不可能等于小球A的重力,选项D正确. 例2 如图2所示,水平轻杆的一端固定在墙上,轻绳与竖直方向的夹角为37°,小球的重力为12 N,轻绳的拉力为10 N,水平轻弹簧的弹力为9 N,小球处于静止状态,求轻杆对小球的作用力. 图2 答案 见解析 解析 设杆的弹力大小为F,与水平方向的夹角为α. (1)弹簧对小球向左拉时:小球受力如图甲所示. 由平衡条件知: Fcos α+F1sin 37°=F2 Fsin α+F1cos 37°=G 代入数据解得:F=5 N,α=53° 即杆对小球的作用力大小为5 N,方向与水平方向成53°角斜向右上方. (2)弹簧对小球向右推时:小球受力如图乙所示: 由平衡条件得: Fcos α+F1sin 37°+F2=0 Fsin α+F1cos 37°=G 代入数据解得: F=15.5 N,α=π-arctan . 即杆对小球的作用力大小为15.5 N,方向与水平方向成arctan 斜向左上方. 例3 如图3所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg的物体,∠ACB=30°,g取10 m/s2,求: 图3 (1)轻绳AC段的张力FAC的大小; (2)横梁BC对C端的支持力的大小及方向. 答案 (1)100 N (2)100 N 方向与水平方向成30°角斜向右上方 解析 物体M处于平衡状态,根据平衡条件可判断,与物体相连的轻绳拉力大小等于物体的重力,取C点为研究对象,进行受力分析,如图所示. (1)图中轻绳AD跨过定滑轮拉住质量为M的物体,物体处于平衡状态,绳AC段的拉力大小为: FAC=FCD=Mg=10×10 N=100 N (2)由几何关系得:FC=FAC=Mg=100 N 方向和水平方向成30°角斜向右上方. 物理的学习特别强调分析、推理和建模能力的培养,特别是对于题目隐含条件的挖掘,找到解决问题的突破口,此称为破题能力.在本章有一类典型的共点力平衡问题,即轻绳套轻环的动态平衡分析问题,如图4所示. 图4 绳上套的是轻环,作用在绳上形成“活结”,此时绳上的拉力处处相等,平衡时与水平面所成夹角相等,即α=β.当动点P移至P′时,绳长保持不变,夹角α=β也保持不变,Q移至Q′,这与绳“死结”模型截然不同. 此类问题破题关键有两点: (1)不计轻环与绳间的摩擦时,左右两段绳中张力相等,左右两段绳与竖直方向的夹角也相等. (2)总绳长度不变时,sin θ=,绳中张力和绳与竖直方向的夹角θ随两悬点水平距离d的变化而变化. 例4 如图5所示为建筑工地一个小型起重机起吊重物的示意图.一根轻绳跨过光滑的动滑轮,轻绳的一端系在位置A处,动滑轮的下端挂上重物,轻绳的另一端挂在起重机的吊钩C处,起吊重物前,重物处于静止状态.起吊重物过程是这样的:先让吊钩从位置C竖直向上缓慢地移动到位置B,然后再让吊钩从位置B水平向右缓慢地移动到D,最后把重物卸在某一个位置.则关于轻绳上的拉力大小变化情况,下列说法正确的是( ) 图5 A.吊钩从C向B移动过程中,轻绳上的拉力不变 B.吊钩从B向D移动过程中,轻绳上的拉力变小 C.吊钩从C向B移动过程中,轻绳上的拉力变大 D.吊钩从B向D移动过程中,轻绳上的拉力不变 答案 A 解析 由C到B时,两绳夹角不变,故绳子拉力不变,由B到D时,两绳夹角θ增大,2Tcos =mg,绳子拉力增大. 例5 如图6所示,竖直放置的“”形支架上,一根不可伸长的轻绳通过不计摩擦的轻质滑轮悬挂一重物G,现将轻绳的一端固定于支架上的A点,另一端从B点(与A点等高)沿支架缓慢地向C点靠近,则绳中拉力大小变化的情况是( ) 图6 A.变大 B.变小 C.不变 D.先变大后变小 答案 C 解析 因不计轻质滑轮的摩擦,故悬挂重物的左右两段轻绳的拉力大小相等,由平衡条件可知,两绳与竖直方向的夹角大小相等,设均为θ,则有2Fcos θ=G.设左右两段绳长分别为l1、l2,两竖直支架之间的距离为d,则有l1sin θ+l2sin θ=d,得:sin θ=,在悬点B竖直向上移至C点的过程中,虽然l1、l2的大小均变化,但l1+l2不变,故θ不变,F不变,C正确.查看更多