- 2021-05-26 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2020届一轮复习人教版 分子动理论 内能 学案
第十二章 热学 新课程标准 核心知识提炼 1.了解分子动理论的基本观点及相关的实验证据。 2.通过实验,了解扩散现象。观察并能解释布朗运动。了解分子运动速率的统计分布规律,知道分子运动速率分布图像的物理意义。 3.了解固体的微观结构。知道晶体和非晶体的特点。能列举生活中的晶体和非晶体。通过实例,了解液晶的主要性质及其在显示技术中的应用。 4.了解材料科学的有关知识及应用,体会它们的发展对人类生活和社会发展的影响。 5.观察液体的表面张力现象。了解表面张力产生的原因。知道毛细现象。 6.通过实验,了解气体实验定律,知道理想气体模型,能用分子动理论和统计观点解释气体压强和气体实验定律。 7.知道热力学第一定律。通过有关史实,了解热力学第一定律和能量守恒定律的发现过程,体会科学探索中的挫折和失败对科学发现的意义。 8.理解能量守恒定律,能用能量守恒的观点解释自然现象。体会能量守恒定律是最基本、最普遍的自然规律之一。 9.通过自然界中宏观过程的方向性,了解热力学第二定律。 10.了解自然界中存在多种形式的能量。知道不同形式的能量可互相转化,在转化过程中能量总量保持不变,能量转化是有方向性的。 11.知道利用能量是人类生存和社会发展的必要条件之一,人类利用的能量来自可再生能源和不可再生能源。 12.知道合理使用能源的重要性,具有可持续发展观念,养成节能的习惯。 13.收集资料,讨论能源的开发与利用所带来的环境污染问题,认识环境污染的危害,思考科学·技术·社会·环境协调发展的关系,具有环境保护的意识和行动。 分子动理论 扩散现象 布朗运动 分子运动速率的统计分布规律 固体的微观结构 晶体和非晶体 液晶的性质和应用 液体的表面张力现象 气体实验定律 理想气体模型 热力学第一定律 能量守恒定律 热力学第二定律 能量转化的方向性 合理使用能源的重要性 实验:用油膜法估测分子的大小 实验:探究气体压强与体积的关系 第1节 分子动理论 内能 一、分子动理论的基本内容 1.物体是由大量分子组成的 (1)分子很小:直径数量级为10-10 m。 (2)分子数目特别大: 阿伏加德罗常数NA=6.02×1023 mol-1。 2.分子热运动 (1)扩散现象:不同物质能够彼此进入对方的现象。温度越,扩散越快。 (2)布朗运动:①永不停息、无规则运动; ②颗粒越,运动越明显; ③温度越,运动越剧烈; ④运动轨迹无法确定,只能记录每隔一段时间微粒的位置,并用位置连线研究布朗运动。 (3)热运动:物体里的分子永不停息地做无规则运动,这种运动跟温度有关,通常称作热运动。 3.分子间的相互作用力 (1)分子间同时存在相互作用的引力和斥力。实际表现出的分子力是引力和斥力的合力。 (2)引力和斥力都随分子间距离的减小而增大;随分子间距离的增大而减小;斥力比引力变化快。 (3)Fr图像(r0的数量级为10-10 m)。 r=r0 F引=F斥 F=0 r<r0 F引<F斥 F为斥力 r>r0 F引>F斥 F为引力 r>10r0 F引=F斥=0 F=0 二、温度和物体的内能 1.温度 两个系统处于热平衡时,它们具有某个“共同的热学性质”,我们把表征这一“共同热学性质”的物理量定义为温度。一切达到热平衡的系统都具有相同的温度。 2.两种温标 摄氏温标和热力学温标。 关系:T=t+273.15_K。 3.分子的动能和平均动能 (1)分子动能是分子热运动所具有的动能。 (2)分子热运动的平均动能是所有分子热运动的动能的平均值,温度是分子热运动的平均动能的标志。 (3)分子热运动的总动能是物体内所有分子热运动动能的总和。 4.分子的势能 (1)由于分子间存在着引力和斥力,所以分子具有由它们的相对位置决定的能,即分子势能。 (2)分子势能的决定因素:微观上——决定于分子间距离和分子排列情况;宏观上——决定于体积和状态。 5.物体的内能 (1)等于物体中所有分子的热运动动能与分子势能的总和,是状态量。 (2)对于给定的物体,其内能大小由物体的温度和体积决定。 (3)物体的内能与物体的位置高低、运动速度大小无关。 [深化理解] 1.与化学中的“分子”不一样,热学研究组成物体的微粒的运动规律和统计规律,把化学中的原子、分子或离子统称为分子。 2.扩散现象的本质是分子的运动,固、液、气三态均可发生扩散现象,它直接证明了组成物体的分子在不停地做无规则运动;布朗运动的主体不是分子,而是液体或气体中的悬浮颗粒,它间接证明了分子的无规则运动。 3.两分子间距为r0时分子力为零,分子势能最低,但不是零,而是负值,因为一般认为分子间距为无穷远(r>10r0)时,分子势能为零。 4.温度是分子平均动能的标志,温度相同时,各种物体分子的平均动能均相同。 5.与机械运动相对应的能量称为机械能;与热运动相对应的能量称为内能。宏观上内能由物质的量、温度和体积决定。 [基础自测] 一、判断题 (1)布朗运动是液体分子的无规则运动。(×) (2)温度越高,布朗运动越剧烈。(√) (3)分子间的引力和斥力都随分子间距的增大而增大。(×) (4)-33 ℃=240 K。(×) (5)分子动能指的是由于分子定向移动具有的能。 (×) (6)当分子力表现为引力时,分子势能随分子间距离的增大而增大。(√) (7)内能相同的物体,它们的分子平均动能一定相同。(×) 二、选择题 1.根据分子动理论,下列说法正确的是( ) A.一个气体分子的体积等于气体的摩尔体积与阿伏加德罗常数之比 B.显微镜下观察到的墨水中的小炭粒所做的不停地无规则运动,就是分子的运动 C.分子间的相互作用力一定随分子间距离的增大而减小 D.分子势能随着分子间距离的增大,可能先减小后增大 解析:选D 由于气体分子的间距大于分子直径,故气体分子的体积小于气体的摩尔体积与阿伏加德罗常数之比,故A错误;显微镜下观察到的墨水中的小炭粒所做的不停地无规则运动,是布朗运动,它是分子无规则运动的体现,但不是分子的运动,故B错误;若分子间距离从平衡位置开始增大,则引力与斥力的合力先增大后减小,故C错误;若分子间距是从小于平衡距离开始变化,则分子力先做正功再做负功,故分子势能先减小后增大,故D正确。 2.[教科版选修3-3 P39T2改编]对内能的理解,下列说法正确的是( ) A.系统的内能是由系统的状态决定的 B.温度高的系统比温度低的系统的内能大 C.不计分子之间的分子势能,质量和温度相同的氢气和氧气具有相同的内能 D.做功可以改变系统的内能,但是单纯地对系统传热不能改变系统的内能 解析:选A 系统的内能是一个只依赖于系统自身状态的物理量,所以是由系统的状态决定的,A正确;系统的内能与温度、体积、物质的多少等因素都有关系,B错误;质量和温度相同的氢气和氧气的平均动能相同,但它们的物质的量不同,内能不同,C错误;做功和热传递都可以改变系统的内能,D错误。 高考对本节内容的考查,主要集中在微观量估算的“两种建模方法”、扩散现象、布朗运动与分子热运动以及分子动能、分子势能和内能,通常以选择题或填空题的形式呈现,难度一般。 考点一 微观量估算的“两种建模方法” [基础自修类] [题点全练] 1.[气体分子的估算] (多选)(2016·上海高考)某气体的摩尔质量为M,分子质量为m 。若1摩尔该气体的体积为Vm,密度为ρ,则该气体单位体积分子数为(阿伏加德罗常数为NA)( ) A. B. C. D. 解析:选ABC 1摩尔该气体的体积为Vm,则单位体积分子数为n=,气体的摩尔质量为M,分子质量为m,则1 mol气体的分子数为NA=,可得n=,气体的密度为ρ,则1摩尔该气体的体积Vm=,则有n=,故D错误,A、B、C正确。 2.[液体分子的估算] 空调在制冷过程中,室内空气中的水蒸气接触蒸发器(铜管)液化成水,经排水管排走,空气中水分越来越少,人会感觉干燥。某空调工作一段时间后,排出液化水的体积V=1.0×103 cm3。已知水的密度ρ=1.0×103 kg/m3、摩尔质量M=1.8×10-2 kg/mol,阿伏加德罗常数NA=6.0×1023 mol-1。试求:(结果均保留一位有效数字) (1)该液化水中含有水分子的总数N; (2)一个水分子的直径d。 解析:(1)水的摩尔体积为 Vmol== m3/mol=1.8×10-5 m3/mol, 水分子数: N== 个≈3×1025 个。 (2)建立水分子的球体模型有=πd3,可得水分子直径:d== m≈4×10-10 m。 答案:(1)3×1025个 (2)4×10-10 m [名师微点] 1.求解分子直径时的两种模型(固体和液体) (1)把分子看成球形,d= 。 (2)把分子看成小立方体,d=。 [注意] 对于气体,利用d=算出的不是分子直径,而是气体分子间的平均距离。 2.宏观量与微观量的相互关系 (1)微观量:分子体积V0、分子直径d、分子质量m0等。 (2)宏观量:物体的体积V、密度ρ、质量m、摩尔质量M、摩尔体积Vmol、物质的量n等。 (3)相互关系 ①一个分子的质量:m0==。 ②一个分子的体积:V0==(估算固体、液体分子的体积或气体分子所占空间体积)。 ③物体所含的分子数:N=n·NA=·NA=·NA。 考点二 扩散现象、布朗运动与分子热运动 [基础自修类] [题点全练] 1.[扩散现象的理解] (多选)关于扩散现象,下列说法正确的是( ) A.温度越高,扩散进行得越快 B.扩散现象是不同物质间的一种化学反应 C.扩散现象是由物质分子无规则运动产生的 D.扩散现象在气体、液体和固体中都能发生 解析:选ACD 扩散现象与温度有关,温度越高,扩散进行得越快,选项A正确。扩散现象是由于分子的无规则运动引起的,不是一种化学反应,选项B错误,C正确。扩散现象在气体、液体和固体中都能发生,选项D正确。 2.[布朗运动的理解] PM2.5是指空气中直径小于2.5微米的悬浮颗粒物,其飘浮在空中做无规则运动,很难自然沉降到地面。下列说法中不正确的是( ) A.气温越高,PM2.5运动越剧烈 B.PM2.5在空气中的运动属于布朗运动 C.PM2.5在空气中的运动就是分子的热运动 D.倡导低碳生活有利于减小PM2.5在空气中的浓度 解析:选C 由于PM2.5颗粒很小,PM2.5在空气中的运动是由于周围大量分子对PM2.5碰撞的不平衡使其在空中做无规则运动,是布朗运动,只是空气分子热运动的反映,B正确,C错误;温度越高,分子运动越剧烈,PM2.5运动也越剧烈,A 正确;因为矿物燃料燃烧的废气排放是形成PM2.5的主要原因,所以倡导低碳生活、减少化石燃料的使用能有效减小PM2.5在空气中的浓度,D正确。 3.[分子热运动的理解] (2017·北京高考)以下关于热运动的说法正确的是( ) A.水流速度越大,水分子的热运动越剧烈 B.水凝结成冰后,水分子的热运动停止 C.水的温度越高,水分子的热运动越剧烈 D.水的温度升高,每一个水分子的运动速率都会增大 解析:选C 水流的速度是机械运动的速度,不同于水分子无规则热运动的速度,A项错误;分子永不停息地做无规则运动,B项错误;温度是分子平均动能的标志,温度越高,分子的热运动越剧烈,故C项正确;水的温度升高,水分子的平均动能增大,即水分子的平均运动速率增大,但不是每一个水分子的运动速率都增大,D项错误。 [名师微点] 扩散现象、布朗运动与热运动的比较 扩散现象 布朗运动 热运动 活动主体 分子 固体微小颗粒 分子 区别 是分子的运动,发生在固体、液体、气体任何两种物质之间 是比分子大得多的颗粒的运动,只能在液体、气体中发生 是分子的运动,不能通过光学显微镜直接观察到 共同点 (1)都是无规则运动 (2)都随温度的升高而更加激烈 联系 扩散现象、布朗运动都反映了分子做无规则的热运动 考点三 分子力、分子势能、平均动能和内能 [基础自修类] [题点全练] 1.[对物体内能的理解] (多选)关于物体的内能,下列叙述正确的是( ) A.温度高的物体比温度低的物体内能大 B.物体的内能不可能为零 C.内能相同的物体,它们的分子平均动能一定相同 D.内能不相同的物体,它们的分子平均动能可能相同 解析:选BD 温度高低反映分子平均动能的大小,但由于物体不同,分子数目不同,所处状态不同,无法反映内能大小,选项A 错误;由于分子都在做无规则运动,因此,任何物体内能都不可能为零,选项B正确;内能相同的物体,它们的分子平均动能不一定相同,选项C错误;内能不同的两个物体,它们的温度可能相同,即它们的分子平均动能可能相同,选项D正确。 2.[对分子力的理解] (多选)关于分子间的作用力,下列说法正确的是( ) A.分子之间的斥力和引力同时存在 B.分子之间的引力随分子间距离的增大而增大,斥力则减小,所以在大于平衡距离时,分子力表现为引力 C.分子之间的距离减小时,分子力一直做正功 D.分子之间的距离增大时,分子势能可能增加 解析:选AD 分子间既存在引力,也存在斥力,引力和斥力都随分子间距离的减小而增大,随分子间距离的增大而减小,只是斥力变化的快,所以当分子间距离大于r0时分子力表现为引力,小于r0时表现为斥力,故A正确、B错误;当分子力表现为引力,相互靠近时分子力做正功,当分子力表现为斥力,相互靠近时分子力做负功,故C错误;当分子力表现为引力,分子之间的距离增大时分子力做负功,分子势能增加,故D正确。 3.[分子力与分子势能的综合问题] (多选)两分子间的斥力和引力的合力F与分子间距离r的关系如图中曲线所示,曲线与r轴交点的横坐标为r0。相距很远的两分子在分子力作用下,由静止开始相互接近。若两分子相距无穷远时分子势能为零,下列说法正确的是( ) A.在r>r0阶段,F做正功,分子动能增加,势能减小 B.在r查看更多