【物理】2019届一轮复习人教版动能和动能定理学案(1)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【物理】2019届一轮复习人教版动能和动能定理学案(1)

动能和动能定理 按照高考考纲的要求,本章内容可以分成四部分,即:功和功率;动能、势能、动能定理;机械能守恒定律及其应用;功能关系、动量、能量综合。其中重点是对动能定理、机械能守恒定律的理解,能够熟练运用动能定理、机械能守恒定律分析解决力 问题。难点是动量能量综合应用问题。动能定理是一条适用范围很广的物理规律,解题的优越性很多。根本原因在于它省去了矢量式的很多麻烦。‎ ‎ ‎ 一、对动能定理的理解 ‎1.对“外力”的两点理解 ‎(1)“外力”指的是合力,重力、弹力、摩擦力、电场力、磁场力或其他力,它们可以同时作用,也可以不同时作用。‎ ‎(2)既可以是恒力,也可以是变力。‎ ‎2.“=”体现的二个关系 二、动能定理的应用 ‎ ‎1.应用动能定理的流程 ‎2.应用动能定理的注意事项 ‎(1)动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。‎ ‎(2)应用动能定理的关键在于对研究对象进行准确的受力分析及运动过程分析,并画出运动过程的草图,借助草图理解物理过程之间的关系。‎ ‎(3)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解,这样更简便。‎ ‎(4)列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验。‎ 三、动能定理的图像问题 ‎1.解决物理图像问题的基本步骤 ‎(1)观察题目给出的图像,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义。‎ ‎(2)根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式。‎ ‎(3)将推导出的物理规律与数 上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点、图线下的面积所对应的物理意义,分析解答问题,或者利用函数图线上的特定值代入函数关系式求物理量。‎ ‎2.四类图像所围面积的含义 ‎(1)vt图:由公式x=vt可知,vt图线与坐标轴围成的面积表示物体的位移。‎ ‎(2)at图:由公式Δv=at可知,at图线与坐标轴围成的面积表示物体速度的变化量。‎ ‎(3)Fs图:由公式W=Fs可知,Fs图线与坐标轴围成的面积表示力所做的功。‎ ‎(4)Pt图:由公式W=Pt可知,Pt图线与坐标轴围成的面积表示力所做的功。‎ 四、应用动能定理解决平抛运动、圆周运动问题 ‎ ‎1.平抛运动和圆周运动都属于曲线运动,若只涉及位移和速度而不涉及时间,应优先考虑用动能定理列式求解。‎ ‎2.动能定理的表达式为标量式,不能在某一个方向上列动能定理方程。‎ 高频考点一 动能定理的理解及应用                   ‎ ‎1.做功的过程就是能量转化的过程,动能定理表达式中的“=”的意义是一种因果关系在数值上相等的符号。‎ ‎2.动能定理叙述中所说的“外力”,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力。‎ ‎3.动能定理中涉及的物理量有F、l、m 、v、W、Ek等,在处理含有上述物理量的问题时,优先考虑使用动能定理。 , ‎ ‎4.若过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑。‎ ‎【例1】下列有关动能的说法中正确的是(  )‎ A.物体只有做匀速运动时,动能才不变 B.物体的动能变化时,速度不一定变化 C.物体做平抛运动时,水平速度不变,动能不变 D.物体做自由落体运动时,物体的动能增加 解析: 物体只要速率不变,动能就不变,A错误;物体的动能变化时,速度的大小一定变化,B错误;物体做平抛运动时,速率增大,动能就会增大,C错误;物体做自由落体运动时,其速率增大,物体的动能增加,D正确。‎ 答案: D ‎【变式训练】(多选)关于动能定理的表达式W=Ek2-Ek1,下列说法正确的是(  )‎ A.公式中的W为不包含重力的其他力做的总功 B.公式中的W为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合外力再求合外力的功 C.公式中的Ek2-Ek1为动能的增量,当W>0时动能增加,当W<0时,动能减少 D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功 ‎【举一反三】(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体。电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为H时,电梯的速度达到v,则在这个过程中,以下说法中正确的是(  )‎ A.电梯地板对物体的支持力所做的功等于 B.电梯地板对物体的支持力所做的功大于 C.钢索的拉力所做的功等于+MgH D.钢索的拉力所做的功大于+MgH 解析: 以物体为研究对象,由动能定理得WN-mgH=mv2,即WN=mgH+mv2,选项B正确,选项A错误。以系统为研究对象,由动能定理得WT-(m+M)gH=(M+m)v2,即WT=(M+m)v2+(M+m)gH>+MgH,选项D正确,选项C错误。‎ 答案: BD 高频考点二 动能定理在多过程中的应用 ‎【例2】‎ 如图所示,竖直光滑半圆轨道DOC与水平粗糙轨道ABC相切于C点,轨道的AB部分可绕B点转动,一质量为m的滑块在水平外力F的作用下从A点由静止做匀加速直线运动,到B点时撤去外力F,滑块恰好能通过最高点D。现将AB顺时针转过37°(不计滑块在B点的能量损失),若将滑块从A点由静止释放,则滑块恰好能到达与圆心等高的O点。已知滑块与轨道ABC间的动摩擦因数μ=0.5,重力加速度为g,sin 37°=0.6,BC=。‎ ‎(1)求水平外力F与滑块重力mg的比值;‎ ‎(2)若斜面AB光滑,其他条件不变,滑块仍从A点由静止释放,求滑块在D点对轨道的压力大小。‎ 解析: (1)因滑块恰好能通过最高点D,所以在D点有 mg=m 即FD=2mg 由牛顿第三定律知滑块在D点对轨道的压力大小为2mg。‎ 答案: (1) (2)2mg ‎【注意事项】‎ ‎(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力 研究方法要简便。‎ ‎(2)当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解。‎ ‎(3)应用动能定理时,必须明确各力做功的正、负。当一个力做负功时,可设物体克服该力做功为W ‎,将该力做功表达为-W,也可以直接用字母W表示该力做功,使其字母本身含有负号。‎ ‎【变式训练】如图所示,半径R=0.5 m的光滑圆弧面CDM分别与光滑斜面体ABC和斜面MN相切于C、M点,斜面倾角分别如图所示。O为圆弧圆心,D为圆弧最低点,C、M在同一水平高度。斜面体ABC固定在地面上,顶端B安装一定滑轮,一轻质软细绳跨过定滑轮(不计滑轮摩擦)分别连接小物块P、Q(两边细绳分别与对应斜面平行),并保持P、Q两物块静止。若PC间距为L1=0.25 m,斜面MN足够长,物块P质量m1=3 kg,与MN间的动摩擦因数μ=,重力加速度g=10 m/s2。求:(sin 37°=0.6,cos 37°=0.8)‎ ‎(1)小物块Q的质量m2;‎ ‎(2)烧断细绳后,物块P第一次到达D点时对轨道的压力大小;‎ ‎(3)物块P在MN斜面上滑行的总路程。‎ ‎(3)分析可知最终物块在CDM之间往复运动,C点和M点速度为零 由全过程动能定理得:m1gL1sin 53°-μm1gcos 53°s总=0‎ 解得s总=1 m 答案: (1)4 kg (2)78 N (3)1 m ‎【举一反三】如图所示,一小球从A点以某一水平向右的初速度出发,沿水平直线轨道运动到B点后,进入半径R=0.1 m的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C点运动,C点右侧有一壕沟,C、D两点的竖直高度h=0.8 m,水平距离x=1.2 m,水平轨道AB长为L1=1 m,BC长为L2=3 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g取10 m/s2。 , ‎ ‎(1)若小球恰能通过圆形轨道的最高点,求小球在A点的初速度;‎ ‎(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,小球在A点的初速度的范围是多少?‎ 若小球到C点速度为0,也不会掉进壕沟,‎ 则对小球从A到C过程应用动能定理有-μmg(L1+L2)=0-mv,‎ 得到vA′=4 m/s。‎ 则小球在A点的初速度范围是3 m/s≤vA≤4 m/s和vA≥5 m/s。‎ 答案: (1)3 m/s (2)3 m/s≤vA≤4 m/s和vA≥5 m/s ‎【方法技巧】用好动能定理的“5个”突破 突破①——研究对象的选取,动能定理适用于单个物体,当题目中出现多个物体时可分别将单个物体取为研究对象,应用动能定理。 , ‎ 突破②——研究过程的选取,应用动能定理时,选取不同的研究过程列出的方程是不相同的。因为动能定理是个过程式,选取合适的过程往往可以大大简化运算。‎ 突破③——受力分析,运用动能定理时,必须分析清楚物体在过程中的全部受力情况,找出哪些力不做功,哪些力做功,做多少功,从而确定出外力的总功,这是解题的关键。‎ 突破④——位移的计算,应用动能定理时,要注意有的力做功与路程无关,只与位移有关,有的力做功却与路程有关。‎ 突破⑤——初、末状态的确定,动能定理的计算式为标量式,v为相对同一参考系的速度,所以确定初、末状态动能时,必须相对于同一参考系而言。‎ 高频考点三 动能定理与图象结合问题 ‎【例3】 如图5甲所示,在倾角为30°的足够长的光滑斜面AB的A处连接一粗糙水平面OA,OA长为‎4 m。有一质量为m的滑块,从O处由静止开始受一水平向右的力F作用。F只在水平面上按图乙所示的规律变化。滑块与OA间的动摩擦因数μ=0.25,g取‎10 m/s2,试求:‎ 图5]‎ ‎(1)滑块运动到A处的速度大小;‎ ‎(2)不计滑块在A处的速率变化,滑块冲上斜面AB的长度是多少?‎ 解析 (1)由题图乙知,在前‎2 m内,F1=2mg做正功,在第3 m内,F2=-0.5mg,做负功,在第4 m 解得:L=‎‎5 m 所以滑块冲上斜面AB的长度L=‎‎5 m 答案 (1)‎5 m/s (2)‎‎5 m ‎【变式训练】一质量为m的物体在水平恒力F的作用下沿水平面运动,在t0时刻撤去力F,其v-t图象如图6所示。已知物体与水平面间的动摩擦因数为μ,则下列关于力F的大小和力F做功W的大小关系式正确的是(  )‎ 图6‎ A.F=μmg B.F=2μmg C.W=μmgv0t0 D.W=μmgv0t0‎ 解析 在t0时刻前,F-μmg=m,在t0时刻以后,-μmg=-m,由以上两式可得F=3μmg,因此选项A、B均不正确;在0至t0时间内,W-μmg·v0t0=mv,在t0至3t0时间内,-μmg·v0(2t0)=-mv,因此力F做的功为 W=μmgv0t0,选项C错误,选项D正确。‎ 答案 D ‎【举一反三】‎ 物体沿直线运动的v t图象如图所示,已知在第1秒内合外力对物体做的功为W,则(  )‎ A.从第1秒末到第3秒末合外力做功为4W B.从第3秒末到第5秒末合外力做功为-2W C.从第5秒末到第7秒末合外力做功为W D.从第3秒末到第4秒末合外力做功为-0.75W 答案: CD ‎1. (2018年江苏卷)从地面竖直向上抛出一只小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能Ek与时间t的关系图像是( )‎ A. ‎ B. ‎ C. ‎ D. ‎ ‎【答案】A ‎【解析】本题考查动能的概念和Ek-t图象,意在考查考生的推理能力和分析能力。小球做竖直上抛运动时,速度v=v0-gt,根据动能得,故图象A正确。‎ ‎2. (2018年全国II卷)高空坠物极易对行人造成伤害。若一个50 g的鸡蛋从一居民楼的25层坠下,与地面的撞击时间约为2 ms,则该鸡蛋对地面产生的冲击力约为( )‎ A. 10 N B. 102 N C. 103 N D. 104 N ‎【答案】C ‎3. (2018年全国II卷)如图,某同 用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度,木箱获得的动能一定( )‎ A. 小于拉力所做的功 B. 等于拉力所做的功 C. 等于克服摩擦力所做的功 D. 大于克服摩擦力所做的功 ‎【答案】A ‎【解析】受力分析,找到能影响动能变化的是那几个物理量,然后观测这几个物理量的变化即可。‎ 木箱受力如图所示:‎ 木箱在移动的过程中有两个力做功,拉力做正功,摩擦力做负功,根据动能定理可知即: ,所以动能小于拉力做的功,故A正确;无法比较动能与摩擦力做功的大小,CD错误。故选A。 —— ‎ ‎4. (2018年天津卷)滑雪运动深受人民群众喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中 A. 所受合外力始终为零 B. 所受摩擦力大小不变 C. 合外力做功一定为零 D. 机械能始终保持不变 ‎【答案】C 心力,故有,运动过程中速率恒定,且在减小,所以曲面对运动员的支持力越来越大,根据可知摩擦力越来越大,B错误;运动员运动过程中速率不变,质量不变,即动能不变,动能变化量为零,根据动能定理可知合力做功为零,C正确;因为克服摩擦力做功,机械能不守恒,D错误;‎ ‎5. (2018年全国Ⅰ卷)如图,abc是竖直面内的光滑固定轨道,ab水平,长度为2R:bc是半径为R的四分之一的圆弧,与ab相切于b点。一质量为m的小球。始终受到与重力大小相等的水平外力的作用,自a点处从静止开始向右运动,重力加速度大小为g。小球从a点开始运动到其他轨迹最高点,机械能的增量为( )‎ A. 2mgR   B. 4mgR   C. 5mgR    D. 6mgR ‎【答案】C 程中,水平方向的位移大小为5R,则小球机械能的增加量△E=F·5R=5mgR,C正确,ABD错误。‎ ‎6. (2018年江苏卷)如图所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置.物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点.在从A到B的过程中,物块( )‎ A. 加速度先减小后增大 B. 经过O点时的速度最大 C. 所受弹簧弹力始终做正功 D. 所受弹簧弹力做的功等于克服摩擦力做的功 ‎【答案】AD ‎1.【2017·江苏卷】一小物块沿斜面向上滑动,然后滑回到原处.物块初动能为,与斜面间的动摩擦因数不变,则该过程中,物块的动能与位移的关系图线是 ‎【答案】C ‎【解析】向上滑动的过程中,根据动能定理:,同理,下滑过程中,由动能定理可得:,故C正确;ABD错误. , ‎ ‎2.【2017·天津卷】“天津之眼”是一座跨河建设、桥轮合一的摩天轮,是天津市的地标之一。摩天轮悬挂透明座舱,乘客随座舱在竖直面内做匀速圆周运动。下列叙述正确的是 A.摩天轮转动过程中,乘客的机械能保持不变 B.在最高点,乘客重力大于座椅对他的支持力 C.摩天轮转动一周的过程中,乘客重力的冲量为零 D.摩天轮转动过程中,乘客重力的瞬时功率保持不变 ‎【答案】B ‎3.【2017·江苏卷】如图所示,三个小球A、B、C的质量均为m,A与B、C间通过铰链用轻杆连接,杆长为L,B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A由静止释放下降到最低点,两轻杆间夹角α由60°变为120°,A、B、C在同一竖直平面内运动,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g.则此下降过程中 ‎(A)A的动能达到最大前,B受到地面的支持力小于mg ‎(B)A的动能最大时,B受到地面的支持力等于mg ‎(C)弹簧的弹性势能最大时,A的加速度方向竖直向下 ‎(D)弹簧的弹性势能最大值为mgL ‎【答案】AB ‎1.【2016·四川卷】 韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1900 J,他克服阻力做功100 J.韩晓鹏在此过程中(  )‎ A.动能增加了1900 J B.动能增加了2000 J C.重力势能减小了1900 J ‎ D.重力势能减小了2000 J ‎【答案】C 【解析】由题可得,重力做功1900 J,则重力势能减少1900 J,可得C正确,D错误.由动能定理:WG-Wf=ΔEk可得动能增加1800 J,则A、B错误. : ‎ ‎2.【2016·浙江卷】 如图14所示为一滑草场,某条滑道由上下两段高均为h,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=0.6,cos 37°=0.8).则(  )‎ 图14‎ A.动摩擦因数μ= B.载人滑草车最大速度为 C.载人滑草车克服摩擦力做功为mgh D.载人滑草车在下段滑道上的加速度大小为g ‎3.【2016·全国卷Ⅰ】 如图1,一轻弹簧原长为2R,其一端固定在倾角为37°的固定直轨道AC的底端A处,另一端位于直轨道上B处,弹簧处于自然状态,直轨道与一半径为R的光滑圆弧轨道相切于C点,AC=7R,A、B、C、D均在同一竖直平面内.质量为m的小物块P自C点由静止开始下滑,最低到达E点(未画出),随后P沿轨道被弹回,最高到达F点,AF=4R,已知P与直轨道间的动摩擦因数μ=,重力加速度大小为g.(取sin 37°=,cos 37°=)‎ ‎(1)求P第一次运动到B点时速度的大小.‎ ‎(2)求P运动到E点时弹簧的弹性势能.‎ ‎(3)改变物块P的质量,将P推至E点,从静止开始释放.已知P自圆弧轨道的最高点D处水平飞出后,恰好通过G点.G点在C点左下方,与C点水平相距R、竖直相距R,求P运动到D点时速度的大小和改变后P的质量.‎ 图1‎ ‎【答案】 (1)2 (2)mgR (3) m ‎【解析】(1)根据题意知,B、C之间的距离l为 l=7R-2R ①‎ 设P到达B点时的速度为vB,由动能定理得 mglsin θ-μmglcos θ=mv ②‎ 式中θ=37°,联立①②式并由题给条件得 vB=2 ③‎ ‎(2)设BE=x,P到达E点时速度为零,设此时弹簧的弹性势能为Ep.P由B点运动到E点的过程中,由动能定理有 ‎(3)设改变后P的质量为m1,D点与G点的水平距离x1和竖直距离y1分别为 x1=R-Rsin θ ⑨‎ y1=R+R+Rcos θ ⑩‎ 式中,已应用了过C点的圆轨道半径与竖直方向夹角仍为θ的事实.‎ 设P在D点的速度为vD,由D点运动到G点的时间为t.由平抛物运动公式有 y1=gt2 ⑪ | | ]‎ x1=vDt ⑫‎ 联立⑨⑩⑪⑫式得 vD= ⑬‎ 设P在C点速度的大小为vC,在P由C运动到D的过程中机械能守恒,有 ]‎ m1v=m1v+m‎1g ⑭‎ P由E点运动到C点的过程中,同理,由动能定理有 Ep-m‎1g(x+5R)sin θ-μm‎1g(x+5R)cos θ=m1v⑮‎ 联立⑦⑧⑬⑭⑮式得 m1=m ⑯‎ ‎4.【2016·全国卷Ⅱ】 小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图1所示.将两球由静止释放,在各自轨迹的最低点(  ) , , ‎ 图1‎ A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度 ‎【答案】C  k ]‎ ‎5.【2016·全国卷Ⅲ】 一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍.该质点的加速度为(  )‎ A. B. C. D. ‎【答案】A ‎ ‎【解析】由Ek=mv2可知速度变为原来的3倍.设加速度为a,初速度为v,则末速度为3v.由速度公式vt=v0+at得3v=v+at,解得at=2v;由位移公式s=v0t+at2得s=vt+·at·t=vt+·2v·t=2vt,进一步求得v=;所以a==·=,A正确.‎ ‎6.【2016·全国卷Ⅲ】 如图所示,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P.它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W.重力加速度大小为g.设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则(  )‎ 图1‎ A.a= B.a= C.N= D.N= ‎【答案】AC ‎ ‎7.【2016·天津卷】 我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m=‎60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=‎3.6 m/s2匀加速滑下,到达助滑道末端B时速度vB=‎24 m/s,A与B的竖直高度差H=‎48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=‎5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取‎10 m/s2.‎ 图1‎ ‎(1)求运动员在AB段下滑时受到阻力Ff的大小;‎ ‎(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?‎ ‎【答案】 (1)144 N (2)‎‎12.5 m ‎【解析】(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,则有v=2ax  ①‎ 由牛顿第二定律有mg-Ff=ma ②‎ 联立①②式,代入数据解得Ff=144 N ③‎ ‎(2)设运动员到达C点时的速度为vC,在由B到达C的过程中,由动能定理有 mgh+W=mv-mv ④‎ 设运动员在C点所受的支持力为FN,由牛顿第二定律有FN-mg=m ⑤‎ 由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R=12.5 m ‎1.【2015·四川·1】在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小 A.一样大 B.水平抛的最大 C.斜向上抛的最大 D.斜向下抛的最大 ‎【答案】A ‎2.【2015·全国新课标Ⅱ·17】一汽车在平直公路上行驶。从某时刻开始计时,发动机的功率P随时间t的变化如图所示。假定汽车所受阻力的大小f恒定不变。下列描述该汽车的速度v随时间t变化的图像中,可能正确的是 ‎【答案】A ‎【解析】由图可知,汽车先以恒定功率P1起动,所以刚开始做加速度减小的加速度运动,后以更大功率P2运动,所以再次做加速度减小的加速运动,故A正确,B、C、D错误。‎ ‎3.【2015·浙江·18】我国 教正在研制航母舰载机使用的电磁弹射器。舰载机总质量为,设起飞过程中发动机的推力恒为;弹射器有效作用长度为‎100m ‎,推力恒定。要求舰载机在水平弹射结束时速度大小达到‎80m/s。弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20 ,则 A.弹射器的推力大小为 B.弹射器对舰载机所做的功为 C.弹射器对舰载机做功的平均功率为 D.舰载机在弹射过程中的加速度大小为 ‎【答案】ABD ‎4.(2015·山东理综,23)如图8甲所示,物块与质量为m的小球通过不可伸长的轻质细绳跨过两等高定滑轮连接。物块置于左侧滑轮正下方的表面水平的压力传感装置上,小球与右侧滑轮的距离为l。开始时物块和小球均静止,将此时传感装置的示数记为初始值。现给小球施加一始终垂直于l段细绳的力,将小球缓慢拉起至细绳与竖直方向成60°角,如图乙所示,此时传感装置的示数为初始值的1.25倍;再将小球由静止释放,当运动至最低位置时,传感装置的示数为初始值的0.6倍。不计滑轮的大小和摩擦,重力加速度的大小为g。求: : ‎ 图8‎ ‎(1)物块的质量;‎ ‎(2)从释放到运动至最低位置的过程中,小球克服空气阻力所做的功。‎ 解析 (1)设开始时细绳的拉力大小为T1,传感装置的初始值为F1,物块质量为M,由平衡条件得 对小球,T1=mg①‎ 对物块,F1+T1=Mg②‎ 当细绳与竖直方向的夹角为60°时,设细绳的拉力大小为T2,传感装置的示数为F2,据题意可知,F2‎ 对物块,由平衡条件得 F3+T3=Mg⑧‎ 联立①②⑤⑥⑦⑧式,代入数据得 Wf=0.1mgl⑨‎ 答案 (1)3m (2)0.1mgl ‎1.(2014·天津卷)如图所示,水平地面上静止放置一辆小车A,质量mA=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块 B置于A的最右端,B的质量mB=2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到vt=2 m/s.求:‎ ‎(1)A开始运动时加速度a的大小;‎ ‎(2)A、B碰撞后瞬间的共同速度v的大小;‎ ‎(3)A的上表面长度l.‎ ‎【答案】(1)2.5 m/s2 (2)1 m/s (3)0.45 m ‎【解析】 (1)以A为研究对象,由牛顿第二定律有 F=mAa①‎ 代入数据解得 a=2.5 m/s2②‎ 由④⑤⑥式,代入数据解得 l=0.45 m⑦‎ ‎2.(2014·四川卷)如图所示,水平放置的不带电的平行金属板p和b相距h,与图示电路相连,金属板厚度不计,忽略边缘效应.p板上表面光滑,涂有绝缘层,其上O点右侧相距h处有小孔K;b板上有小孔T,且O、T在同一条竖直线上,图示平面为竖直平面.质量为m、电荷量为-q(q>0)的静止粒子被发射装置(图中未画出)从O点发射,沿p板上表面运动时间t后到达K孔,不与板碰撞地进入两板之间.粒子视为质点,在图示平面内运动,电荷量保持不变,不计空气阻力,重力加速度大小为g. ; ‎ ‎(1)求发射装置对粒子做的功;‎ ‎(2)电路中的直流电源内阻为r,开关S接“1”位置时,进入板间的粒子落在b板上的A点,A点与过K孔竖直线的距离为l.此后将开关S接“2”位置,求阻值为R的电阻中的电流强度;‎ ‎(3)若选用恰当直流电源,电路中开关S接“1”位置,使进入板间的粒子受力平衡,此时在板间某区域加上方向垂直于图面的、磁感应强度大小合适的匀强磁场(磁感应强度B只能在0 Bm=范围内选取),使粒子恰好从b板的T孔飞出,求粒子飞出时速度方向与b板板面的夹角的所有可能值(可用反三角函数表示).‎ ‎【解析】(1) (2) (3)0<θ≤arcsin [解析] (1)设粒子在p板上做匀速直线运动的速度为v0,有 h=v0t①‎ 设发射装置对粒子做的功为W,由动能定理得 W=mv②‎ 联立①②可得      W=③‎ ‎(2)S接“1”位置时,电源的电动势E0与板间电势差U有 E0=U④‎ 板间产生匀强电场的场强为E,粒子进入板间时有水平方向的速度v0,在板间受到竖直方向的重力和电场力作用而做类平抛运动,设加速度为a,运动时间为t1,有 U=Eh⑤‎ mg-qE=ma⑥‎ h=at⑦‎ l=v0t1⑧‎ qv0B= 过D点作b板的垂线与b板的上表面交于G,由几何关系有 DG=h-R(1+cosθ) TG=h+Rsinθ tanθ== 联立① ,将B=Bm代入,求得 θm=arcsin 当B逐渐减小,粒子做匀速圆周运动的半径为R也随之变大,D点向b板靠近,DT与b板上表面的夹角θ也越变越小,当D点无限接近于b板上表面时,粒子离开磁场后在板间几乎沿着b板上表面运动而从T孔飞出板间区域,此时Bm>B>0满足题目要求,夹角θ趋近θ0,即 θ0=0 则题目所求为  0<θ≤arcsin ‎3.(2014·福建卷Ⅰ) 图为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB段轨道与四分之一光滑圆弧轨道BC在B点水平相切.点A距水面的高度为H,圆弧轨道BC的半径为R,圆心O恰在水面.一质量为m的游客(视为质点)可从轨道AB的任意位置滑下,不计空气阻力.‎ ‎(1)若游客从A点由静止开始滑下,到B点时沿切线方向滑离轨道落在水面上的D点,OD=2R,求游客滑到B点时的速度vB大小及运动过程轨道摩擦力对其所做的功Wf;‎ ‎(2)若游客从AB段某处滑下,恰好停在B点,又因受到微小扰动,继续沿圆弧轨道滑到P点后滑离轨道,求P点离水面的高度h.(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F向=m)‎ ‎【答案】 (1) -(mgH-2mgR) (2)R ‎【解析】(1)游客从B点做平抛运动,有2R=vBt①‎ R=gt2②‎ 由①②式得vB=③‎ 从A到B,根据动能定理,有 mg(H-R)+Wf=mv-0④‎ 由③④式得Wf=-(mgH-2mgR)⑤‎
查看更多

相关文章

您可能关注的文档