2019届二轮复习功、功率 动能定理及其应用课件(共46张)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019届二轮复习功、功率 动能定理及其应用课件(共46张)

第 8 讲 功、功率 动能定理及其 应用 [ 考试要求和考情分析 ] 考试内容 选考要求 历次选考统计 命题角度 2016/04 2016/10 2017/04 2017/11 2018/04 2018/11 物理学史、功率与机车启动问题、功能关系   功 c       10   功率 c       10 、 13 5 动能和动能定理 d 20 、 22 4 、 20 12 、 20 20 20 20 功能关系、动能定理与物体的多过程问题 功的分析和计算 [ 要点总结 ] 1. 判断力是否做功及做正、负功的方法 判断根据 适用情况 根据力和位移的方向的夹角判断 常用于恒力做功的判断 根据力和瞬时速度方向的夹角判断 常用于质点做曲线运动 根据功能关系或能量守恒定律判断 常用于变力做功的判断 2. 计算功的方法 ( 1) 恒力做的功 直接 用 W = Fl cos α 计算。 ( 2) 合外力做的功 方法 一:先求合外力 F 合 ,再用 W 合 = F 合 l cos α 求功。 方法 二:先求各个力做的功 W 1 、 W 2 、 W 3 … ,再应用 W 合 = W 1 + W 2 + W 3 + … 求合外力做的功 。 [ 典例分析 ] 【例 1 】 (2018· 浙江温岭选考模拟 ) 如图 1 所示,匈牙利大力士希恩考·若尔特曾用牙齿拉动 50 t 的 A320 客机。他把绳索的一端系在飞机下方的前轮处,另一端用牙齿紧紧咬住,在 52 s 的时间内将飞机拉动了约 40 m 。假设大力士牙齿的拉力约为 5 × 10 3 N ,绳子与水平方向夹角 θ 约为 30° 。则在拉动飞机的过程中 (    ) 图 1 A. 重力做功约为 2.0 × 10 7 J B. 拉力做功约为 1.7 × 10 5 J C. 克服阻力做功约为 1.5 × 10 5 J D. 合外力做功约为 2.0 × 10 4 J 解析  由于重力方向与运动方向垂直,所以重力不做功,选项 A 错误;由 W = Fl cos α 代入相关数据得拉力做功约 1.7 × 10 5 J ,选项 B 正确;由于未知飞机被拉动时的运动情况,所以无法求得阻力和合力,所以选项 C 、 D 均错误。 答案  B [ 精典题组 ] 1. (2018· 江淮十校联考 ) 如图 2 所示,在向右做匀减速运动的车厢内,一人用力向前推车厢,该人与车厢始终保持相对静止。则下列说法中正确的是 (    ) 图 2 A. 人对车厢的推力不 做功 B. 人对车厢的推力做负功 C. 车厢对人的作用力做正 功 D . 车厢对人的作用力做负 功 解析  人对车厢的推力方向向右,与车厢的位移方向相同,人对车厢的推力做正功,选项 A 、 B 错误;人随车厢一起向右减速,人运动的加速度方向向左,根据牛顿第二定律知车厢对人的水平作用力的方向向左,与车的位移方向相反,车厢对人的作用力做负功,选项 D 正确, C 错误。 答案  D 2. (2018· 浙江台州模拟 ) 如图 3 所示,一物体分别沿轨道 aO 和 bO 由静止滑下,物体与轨道间的动摩擦因数相同,若斜面保持静止,物体克服滑动摩擦力做的功分别为 W 1 和 W 2 ,则两个功的大小的正确关系是 (    ) 图 3 A. W 1 > W 2 B. W 1 = W 2 C. W 1 < W 2 D . 无法 比较 答案   B 功率的理解和计算 [ 要点总结 ] 1. 平均功率的 计算方法 2. 瞬时功率的计算方法 ( 1) 利用公式 P = F v cos α ,其中 v 为 t 时刻的瞬时速度。 ( 2) P = F v F ,其中 v F 为物体的速度 v 在力 F 方向上的分速度。 ( 3) P = F v v ,其中 F v 为物体受到的外力 F 在速度 v 方向上的分力 。 [ 典例分析 ] 【例 2 】 (2018· 浙江名校协作体高三考试 ) 特斯拉 Model S 标配全轮驱动双电机, P100D Model S 更有高性能后置电机,与高效率的前置电机联动,实现超跑级别的加速表现,仅需 2.7 s ,即可从静止加速至 100 km/h 。假设驾驶员与车总质量为 2 200 kg ,则在此加速过程中下列说法中正确的是 (    ) A . 合力做功约为 8.5 × 10 5 J B . 牵引力做功约为 8.5 × 10 5 J C . 合力做功的平均功率约为 3 140 kW D . 牵引力做功的平均功率约为 3 140 kW 答案   A [ 精典题组 ] 3. (2018· 浙江宁波重点中学高三期末 ) 用起重机将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,其 v - t 图象如图 4 所示,下列说法正确的是 (    ) 图 4 A. 在 0 ~ t 1 时间内,起重机拉力逐渐变大 B. 在 t 1 ~ t 2 时间内,起重机拉力的功率保持不变 C. 在 t 1 ~ t 2 时间内,货物的机械能保持不变 D. 在 t 2 ~ t 3 时间内,起重机拉力对货物做负 功 解析   v - t 图象的斜率表示加速度大小,在 0 ~ t 1 时间内货物加速上升,加速度逐渐减小,起重机拉力逐渐变小,选项 A 错误;在 t 1 ~ t 2 时间内,货物匀速上升,拉力方向向上,拉力等于重力,由 P = F v 可知起重机拉力的功率保持不变,选项 B 正确;在 t 1 ~ t 2 时间内,货物匀速上升,动能不变,重力势能增大,所以机械能增大,选项 C 错误;在 t 2 ~ t 3 时间内,货物匀减速上升,拉力方向向上,起重机拉力对货物做正功,选项 D 错误。 答案   B 答案   C 动能定理的理解和应用 [ 要点总结 ] 1. 动能定理公式中体现的 “ 三个关系 ” ( 1) 数量关系:即合力所做的功与物体动能的变化具有等量代换关系。可以通过计算物体动能的变化,求合力做的功,进而求得某一力做的功。 ( 2) 单位关系:等式两侧物理量的国际单位都是焦耳。 ( 3) 因果关系:合力的功是引起物体动能变化的原因 。 2. 对 “ 外力 ” 的理解 动能定理 叙述中所说的 “ 外力 ” ,既可以是重力、弹力、摩擦力,也可以是电场力、磁场力或其他力。 [ 典例分析 ] 【例 3 】 (2018· 浙江台州高三期末质量评估 ) 如图 5 所示是滑沙场地的一段可视为倾角为 30° 的斜面,设人和滑车总质量为 m ,人从距底端高为 h 处的顶端沿滑道由静止开始匀加速下滑,加速度为 0.4 g ,人和滑车可视为质点,则从顶端向下滑到底端的过程中 (    ) 图 5 A. 人和滑车获得的动能为 0.4 mgh B. 人和滑车克服摩擦力做功为 0.6 mgh C. 人和滑车所受合力做功为 0.9 mgh D. 人和滑车减少的机械能为 0.2 mgh 答案   D [ 精典题组 ] 5. (2018· 浙江温州普通高中选考科目模拟 ) 在篮球比赛中,某位同学获得罚球机会,他站在罚球线处用力将篮球投出,篮球约以 1 m/s 的速度撞击篮筐,如图 6 所示。已知篮球质量约为 0.6 kg ,篮筐离地高度 约为 3 m ,忽略篮球受到的空气阻力,则该同学罚球时对篮球做的功大约为 (    ) 图 6 A.1 J B.8 J C.50 J D.100 J 答案  B 6. 在赛车场上,为了安全起见,车道外围都固定上废旧轮胎作为围栏,当车碰撞围栏时起缓冲器作用。在一次模拟实验中用弹簧来代替废旧轮胎,实验情景如图 7 所示,水平放置的轻弹簧左侧固定于墙上,处于自然状态,开始赛车在 A 处且处于静止状态,距弹簧自由端的距离为 L 1 = 1 m 。当赛车启动时,产生水平向左的恒为 F = 24 N 的牵引力使赛车向左匀加速前进,当赛车接触弹簧的瞬间立即关闭发动机,赛车继续压缩弹簧,最后被弹回到 B 处停下。已知赛车的质量为 m = 2 kg , A 、 B 之间的距离为 L 2 = 3 m ,赛车被弹回的过程中离开弹簧时的速度大小为 v = 4 m/s ,水平向右。 g 取 10 m/s 2 。求 : 图 7 (1) 赛车和地面间的动摩擦因数; (2) 赛车刚接触弹簧时速度的大小; (3) 弹簧被压缩的最大距离 。 解得 L = 0.5 m 。 答案  (1)0.2   (2)2 m/s   (3)0.5 m 用动能定理解决多过程问题 [ 要点总结 ] 1. 应用动能定理解题应抓好 “ 两状态,一过程 ” “ 两状态 ” 即明确研究对象的始、末状态的速度或动能情况, “ 一过程 ” 即明确研究过程,确定这一过程研究对象的受力情况和位置变化或位移信息 。 2. 应用动能定理解题的注意点 ( 1) 当物体的运动包含多个不同过程时,可分段应用动能定理求解;当所求解的问题不涉及中间的速度时,也可以全过程应用动能定理求解。 ( 2) 应用动能定理时,必须明确各力做功的正、负。当一个力做负功时,可设物体克服该力做功为 W ,将该力做功表达为- W ,也可以直接用字母 W 表示该力做功,使其字母本身含有负号 。 图 8 (1) 第一次进入圆弧轨道 CD 的 C 点时对场地的压力; (2) 判断运动员能否运动到 AB 圆弧; (3) 运动员最终停止的位置。 解析   (1) 从 BC 的中点到 C 点过程中由动能定理可 得 恰好回到 BC 中点,即距 B 或距 C 1 m 处。 答案   (1)1 440 N  方向竖直向下  (2) 见解析  (3) 距 B 或距 C 1 m 处 [ 精典题组 ] 7. (2018· 浙江名校协作体高三模拟 ) 某兴趣小组设计了一个玩具轨道模型如图 9 所示,将一质量为 m 玩具小车 ( 可以视为质点 ) 放在 O 点,用弹簧装置将其弹出 ( 每次弹出弹簧压缩量均相同 ) ,使其沿着光滑的半圆形轨道 OMA 和 ANB 运动, BC 段是一长为 L 1 = 10.0 m 的粗糙水平面, CD 是倾角为 θ = 37° 的粗糙斜面,长度 L 2 = 6.0 m , DE 段是一长为 L 3 = 1.0 m 的粗糙水平面。圆弧 OMA 和 ANB 的半径分别为 r = 1.0 m, R = 4.0 m 。玩具小车与 BC 、 CD 、 DE 间的动摩擦因数均为 μ = 0.5 ,不考虑在 C 点的能量损失 ( g 取 10 m/s 2 , sin 37° = 0.6 , cos 37° = 0.8) 。 图 9 (1) 若玩具小车的质量 m = 1 kg ,要使玩具小车恰好不脱离圆弧轨道,压缩弹簧弹性势能 E p 为多少? (2) 在满足第 (1) 问的情况下,玩具小车最后停在离 C 点什么位置? (3) 若改变玩具小车质量,小车能不脱离圆轨道并停在 DE 段 ( 小车不脱离直轨道 ) ,问小车质量要满足什么条件 ? (2) 假设玩具小车运动到斜面某点速度为 0 ,根据动能定理 得 解得 x 1 = 5 m<6 m ,故假设正确 。 解得 x 2 = 2 m 。 (3) 若停在 D 点,根据动能定理得 W 弹 + m 1 g (2 R - 2 r ) - m 1 gL 2 sin θ - μm 1 g ( L 1 + L 2 cos θ ) = 0 若停在 E 点,根据动能定理得 W 弹 + m 2 g (2 R - 2 r ) - m 2 gL 2 sin θ - μm 2 g ( L 1 + L 2 cos θ + L 3 ) = 0 又 E p = W 弹 8. (2018· 浙江稽阳联谊学校高三选考模拟 ) 如图 10 所示, AB 为水平绝缘粗糙轨道,动摩擦因数为 0.2 , AB 距离为 3 m ; BC 为半径 r = 1 m 的竖直光滑绝缘半圆轨道; BC 的右侧存在竖直向上的匀强电场。一质量 m = 1 kg ,电荷量 q = 10 - 3 C 的带电小球,在功率 P 恒为 4 W 的水平向右拉力作用下由静止开始运动,到 B 点时撤去拉力。已知到达 B 点之前已经做匀速运动,取 g = 10 m/s 2 ,求 : 图 10 (1) 小球匀速运动的速度大小; (2) 小球从 A 运动到 B 所用的时间; (3) 为使小球能沿圆轨道从 B 点运动到 C 点,匀强电场的电场强度 E 的大小范围? (4) 是否存在某个电场强度 E ,使小球从 C 点抛出后能落到 A 点?请说明理由 。 解析   (1) 因为小球匀速运动,所以 F 牵引 = f E 2 = 9.2 × 10 3 N/C 得 E = 1.462 5 × 10 4 N/C , E 的值超出了 (3) 中的范围,所以不能。 答案   (1)2 m/s   (2)2 s   (3)1.4 × 10 4 N/C ≥ E ≥ 9.2 × 10 3 N/C   (4) 见 解析 对功的概念认识不透导致错 解 【例】 如图 11 所示,木块 B 上表面是水平的,木块 A 置于 B 上,并与 B 保持相对静止,一起沿固定的光滑斜面由静止开始下滑,在下滑过程中 (    ) 图 11 A. A 所受的合外力对 A 不 做功 B. B 对 A 做正功 C. B 对 A 的摩擦力做负 功 D. A 对 B 不 做功 [ 错因分析 ] 错解 1   认为 A 放在 B 上, A 压 B ,则对 B 做正功,而 B 对 A 做负功,从而漏选 D 项。 错解 2   认为 B “ 带着 ” A 沿斜面下滑, B 对 A 应该做正功而错选 B 项。 错解 3   认为摩擦力只对物体做负功而错选 C 项。 [ 正解展示 ]   A 、 B 相对静止,因此具有相同的沿斜面向下的加速度,由整体受力可得加速度的大小 a = g sin θ ,因此 A 所受合力沿斜面向下,与木块 A 的位移方向相同,因此合力对 A 做正功,选项 A 错误; B 对 A 的作用力有竖直向上的支持力和水平向左的静摩擦力两个力,这两个力的合力垂直斜面向上,并等于重力在垂直斜面方向的分力 F 2 ,如图所示,所以 B 对 A 不做功,同理, A 对 B 的作用力垂直斜面向下,也不做功,选项 B 错误, D 正确; B 对 A 的摩擦力跟 A 的位移成锐角,做正功,选项 C 错误。 答案  D 做功情况的判断 1 . 根据力和位移方向的夹角判断,此法常用于恒力做功的判断。 2. 根据力和瞬时速度方向的夹角判断。此法常用于判断质点做曲线运动时变力做的功,夹角为锐角时做正功,夹角为钝角时做负功,夹角为直角时不做功。 3. 根据功能关系或能量守恒定律进行判断。若有能量转化,则应有力做功。
查看更多

相关文章

您可能关注的文档