- 2021-05-22 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中物理 第二章 固体、液体和气体 2.3 固体新材料
2.3 固体新材料 自然界中的物体,除了具有我们所熟悉的可见光图像外,还具有一种红外热辐射图像,但人的肉眼看不到红外热辐射,这是因为它所发出的是红外线,为不可见光。 如今,一种被称为“红外热成像”的神奇技术能够将热辐射图像转换成可见光图像,它能让人们看到过去看不到的东西。实现这一转换的设备称为热像仪,通过这个热像仪,可以让我们在漆黑的夜里看到有如白天的景象。 现在我们来看看热像仪是如何完成这一转换的。光机扫描机构将红外望远镜所接收的景物热辐射图分解成热辐射信号,并聚焦到红外探测器上,探测器与图像视频系统一起将热辐射信号放大并转换成视频信号,通过显示器人们就可以看到一幅幅神奇的画面。热像仪能够在几百分之一摄氏度内识别出温度的微小差异。 热成像技术是根据所有物体都发热这一事实来实现的。尽管许多物体从外表看不出什么,但在其上仍有冷热之分。借助热图上的颜色我们可以看到温度的分布,红色、粉红表示比较高的温度,蓝色和绿色表示了较低的温度。 从第二次世界大战开始,热成像技术就已应用在军事上。由于这种仪器是靠热辐射来工作的,它能够透过漆黑的战场让士兵们清楚地看到敌方的行踪。又由于它为无源性接收系统,比无线电雷达等可见光装置更安全、隐蔽。 现在,热成像技术已经广泛应用在日常生活当中。一个重要应用是诊断疾病,大家都知道,当某一部位出现炎症时,体温会升高,测量体温能够判断有无炎症,但不能确定炎症的具体位置,而热像仪可以直观给出人体温度场分布图,将病变的热图与正常热图比较,就可以从异常变化上诊断病的部位。热成像技术也能在手术室大显身手。当血液流经刚刚被安置的动脉血管时,热像仪上的动脉管的颜色由灰变白,而在通常情况下,肉眼是很难观察到血管是否畅通无阻的。 与诊断疾病类似,高压输变电的电器部件、火车轴箱、电路板等出现故障,也可以用热像仪直接观测检查,避免故障带来的损失。热像仪也可以用于地质调查,地热探查,森林植被分布,大气与海洋监测,火灾的发现与救援。热像仪可以帮助救援者发现那些被浓烟和黑暗隐僻住的遇难者,从而救出他们。 热成像技术还能帮助科学家们进一步探索宇宙的奥秘。可以预期未来热成像技术的应用领域将会得到更充分的开发,推广和普及。查看更多