- 2021-05-14 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2013新课标I卷高考理科数学解答题—概率统计
2013-2017年新课标I卷高考理科数学解答题 概率统计(随机变量及其分布列 本小题满分12分) (2017全国1.理数.19)(12分) 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布. (1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望; (2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得,,其中为抽取的第个零件的尺寸,. 用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到0.01). 附:若随机变量服从正态分布,则, ,. 【考点】:统计与概率。 【思路】:(1)这是典型的二项分布,利用正态分布的性质计算即可。(2)考察正态分布,代入运算即可。 【解析】: (1) 由题意可得,X满足二项分布, 因此可得 (2) 由(1)可得,属于小概率事件,故而如果出现 的零件,需要进行检查。 由题意可得,故而在范围外存在9.22这一个数据,因此需要进行检查。此时:, 。 (2016全国1.理数.19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数. (I)求的分布列; (II)若要求,确定的最小值; (III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个? 【答案】(I)见解析(II)19(III) 【解析】 试题分析:(I)先确定X的取值分别为16,17,18,18,20,21,22,,再用相互独立事件概率模型求概率,然后写出分布列;(II)通过频率大小进行比较;(III)分别求出n=9,n=20的期望,根据时所需费用的期望值小于时所需费用的期望值,应选. 所以的分布列为 [来源:学优高考网gkstk] 16 17 18 19 20 21 22 (Ⅱ)由(Ⅰ)知,,故的最小值为19. (Ⅲ)记表示2台机器在购买易损零件上所需的费用(单位:元). 当时, . 当时, . 可知当时所需费用的期望值小于时所需费用的期望值,故应选. 考点:概率与统计、随机变量的分布列 【名师点睛】本题把随机变量的分布列与统计及函数结合在一起进行考查,有一定综合性但难度不是太大大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题. (2015全国1.理数.19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。 46.6 56.3 6.8 289.8 1.6 1469 108.8 表中w1 =1, , = (Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程; (Ⅲ)已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题: (i) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii) 年宣传费x为何值时,年利率的预报值最大? 附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为: , 【答案】(Ⅰ)适合作为年销售关于年宣传费用的回归方程类型(Ⅱ)(Ⅲ)46.24 ∴关于的回归方程为.……6分 考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识 (2014全国1.理数.18)(本小题满分12分) 从某企业的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图: 质量指标值 (1)求这件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表); (2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差. (i)利用该正态分布,求; (ii)某用户从该企业购买了件这种产品,记表示这件产品中质量指标值位于区间的产品件数.利用(i)的结果,求. 附:. 若,则,. 解:(Ⅰ) (Ⅱ)(ⅰ)因为服从正态分布,,,所以 所以 又 若~,则, 所以 (ⅱ)因为表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,服从二项分布,即~,所以 (2013全国1.理数. 19)(本小题满分12分) 一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验. 假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 【解析】.设第一次取出的4件产品中恰有3件优质品为事件A,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C,第二次取出的1件产品是优质品为事件D,这批产品通过检验为事件E,根据题意有E=(AB)∪(CD),且AB与CD互斥, ∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=+=.…6分 (Ⅱ)X的可能取值为400,500,800,并且 P(X=400)=1-=,P(X=500)=,P(X=800)==, ∴X的分布列为 X 400 500 800 P ……10分 EX=400×+500×+800×=506.25 ……12分查看更多