2020年高考物理 母题题源系列 专题07 动量守恒定律(含解析)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020年高考物理 母题题源系列 专题07 动量守恒定律(含解析)

专题07 动量守恒定律 ‎ ‎【母题来源一】2020年普通高等学校招生全国统一考试物理(江苏卷)‎ ‎【母题原题】(2020·江苏卷)质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为_________。‎ A. B. C. D.‎ ‎【答案】B ‎【解析】设滑板的速度为,小孩和滑板动量守恒得:,解得:,故B正确。‎ ‎【母题来源二】2020年全国普通高等学校招生统一考试物理(新课标全国Ⅲ卷)‎ ‎【母题原题】(2020·新课标全国Ⅲ卷)静止在水平地面上的两小物块A、B,质量分别为mA=l.0 kg,mB=4.0 kg;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离l=1.0 m,如图所示。某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为Ek=10.0 J。释放后,A沿着与墙壁垂直的方向向右运动。A、B与地面之间的动摩擦因数均为u=0.20。重力加速度取g=10 m/s²。A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短。‎ ‎(1)求弹簧释放后瞬间A、B速度的大小;‎ ‎(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?‎ ‎(3)A和B都停止后,A与B之间的距离是多少?‎ ‎【答案】(1)vA=4.0 m/s,vB=1.0 m/s (2)B 0.50 m (3)0.91 m ‎【解析】(1)设弹簧释放瞬间A和B的速度大小分别为vA、vB ‎,以向右为正,由动量守恒定律和题给条件有 ‎0=mAvA–mBvB①‎ ‎②‎ 联立①②式并代入题给数据得 vA=4.0 m/s,vB=1.0 m/s③‎ ‎(2)A、B两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a。假设A和B发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B。设从弹簧释放到B停止所需时间为t,B向左运动的路程为sB。,则有 ‎④‎ ‎⑤‎ ‎⑥‎ 在时间t内,A可能与墙发生弹性碰撞,碰撞后A将向左运动,碰撞并不改变A的速度大小,所以无论此碰撞是否发生,A在时间t内的路程sA都可表示为 sA=vAt–⑦‎ 联立③④⑤⑥⑦式并代入题给数据得 sA=1.75 m,sB=0.25 m⑧‎ 这表明在时间t内A已与墙壁发生碰撞,但没有与B发生碰撞,此时A位于出发点右边0.25 m处。B位于出发点左边0.25 m处,两物块之间的距离s为 s=0.25 m+0.25 m=0.50 m⑨‎ ‎(3)t时刻后A将继续向左运动,假设它能与静止的B碰撞,碰撞时速度的大小为vA′,由动能定理有 ‎⑩‎ 联立③⑧⑩式并代入题给数据得 ‎⑪‎ 故A与B将发生碰撞。设碰撞后A、B的速度分别为vA′′和vB ‎′′,由动量守恒定律与机械能守恒定律有 ‎⑫‎ ‎⑬‎ 联立⑪⑫⑬式并代入题给数据得 ‎⑭‎ 这表明碰撞后A将向右运动,B继续向左运动。设碰撞后A向右运动距离为sA′时停止,B向左运动距离为sB′时停止,由运动学公式 ‎⑮‎ 由④⑭⑮式及题给数据得 ‎⑯‎ sA′小于碰撞处到墙壁的距离。由上式可得两物块停止后的距离 ‎⑰‎ ‎【命题意图】理解动量、动量变化量的概念;知道动量守恒的条件;会利用动量守恒定律分析碰撞、反冲等相互作用问题。‎ ‎【考试方向】动量和动量的变化量这两个概念常穿插在动量守恒定律的应用中考查;动量守恒定律的应用是本部分的重点和难点,也是高考的热点;动量守恒定律结合能量守恒定律来解决碰撞、打击、反冲等问题,以及动量守恒定律与圆周运动、核反应的结合已成为近几年高考命题的热点。‎ ‎【得分要点】1.碰撞现象满足的规律 ‎①动量守恒定律;‎ ‎②机械能不增加;‎ ‎③速度要合理:若碰前两物体同向运动,则应有v后>v前 ‎,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′;碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。‎ ‎2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律;‎ 以质量为m1,速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,‎ 则有m1v1=m1v1′+m2v2′和 解得:;‎ 结论:‎ ‎①当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换速度;‎ ‎②当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都向前运动;‎ ‎③当质量小的球碰质量大的球时,v1′<0,v2′>0,碰撞后质量小的球被反弹回来。‎ ‎3.综合应用动量和能量的观点解题技巧 ‎(1)动量的观点和能量的观点 ‎①动量的观点:动量守恒定律 ‎②能量的观点:动能定理和能量守恒定律 这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,不对过程变化的细节作深入的研究,而关心运动状态变化的结果及引起变化的原因.简单地说,只要求知道过程的始、末状态动量式、动能式和力在过程中的冲量和所做的功,即可对问题求解.‎ ‎(2)利用动量的观点和能量的观点解题应注意下列问题:‎ ‎(a)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,绝无分量表达式。‎ ‎(b)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,在力学中解题时必须注意动量守恒的条件及机械能守恒的条件.在应用这两个规律时,当确定了研究的对象及运动状态变化的过程后,根据问题的已知条件和要求解的未知量,选择研究的两个状态列方程求解。‎ ‎1.(2020·湖北省孝感市高二期中)如图所示,小车静止光滑的水平面上,将系绳小球拉开到一定角度,然后同时放开小球和小车,那么在以后的过程中 A.小球向左摆动时,小车也向左运动,且系统动量守恒 B.小球向左摆动时,小车向右运动,且系统动量守恒 C.小球向左摆到最高点时,小球与小车瞬时速度均为零 D.在任意时刻,小球和小车在水平方向的动量一定大小相等、方向相同 ‎【答案】C ‎【解析】小球与小车组成的系统在水平方向不受外力,竖直方向所受外力不为零,故系统只在在水平方向动量守恒,系统在水平方向动量守恒,系统总动量为零,小球与车的动量大小相等、方向相反,小球向左摆动时,小车向右运动,故选项A、B错误;小球向左摆到最高点时,小球的速度为零而小车的速度也为零,故选项C正确;系统只在在水平方向动量守恒,在任意时刻,小球和小车在水平方向的动量一定大小相等、方向相反,故选项D错误。‎ ‎2.(2020·北京市大兴区高三第一次模拟)如图,光滑水平面上有两辆小车,用细线相连,中间有一个被压缩的轻弹簧,小车处于静止状态。烧断细线后,由于弹力的作用两小车分别向左、右运动。已知两小车质量之比m1:m2=2:1,下列说法正确的是 A.弹簧弹开后两车速度大小之比为1:2‎ B.弹簧弹开后两车动量大小之比为1:2‎ C.弹簧弹开过程m1、m2受到的冲量大小之比为2:1‎ D.弹簧弹开过程弹力对m1、m2做功之比为1:4‎ ‎【答案】A ‎【解析】两小车和弹簧组成的系统,在烧断细线后,合外力为零,动量守恒,所以两车的动量大小之比为1:1,由结合可知,所以A选项正确,B选项错误;由于弹簧弹开过程,对两小车每时每刻的弹力大小相等,又对应着同一段作用时间,由可知,m1、m2受到的冲量大小之比为1:1,所以C选项错误;根据功能关系的规律,弹簧弹开过程,弹力对m1、m2做功等于两小车动能的增量,由,代入数据可知,所以D选项错误。‎ ‎3.(2020·吉林省长春市实验中学高一期末)如图所示,在光滑水平面上停放质量为M=3 kg装有弧形槽的小车。现有一质量为m=1 kg的小球以v0=4 m/s的水平速度沿与切线水平的槽口向小车滑去(不计一切摩擦),到达某一高度后,小球又返回小车右端,则 A.小球在小车上到达最高点时竖直方向速度大小为1m/s B.小球离车后,对地将向右做平抛运动 C.小球离车后,对地将做自由落体运动 D.此过程中小球对车做的功为6J ‎【答案】BD ‎【解析】小球在小车上到达最高点时,小球与小车速度相等,方向水平,所以此时小球在小车上到达最高点时竖直方向速度大小为0,故A错误;以小球与小车为系统,水平方向动量守恒,由动量守恒定律得:‎ ‎;不计一切摩擦,机械能守恒,由机械能守恒定律得:。解得小球离车的速度,小球离车时车的速度,负号表示方向向右,故小球离车后,对地将向右做平抛运动,故B正确,C错误;由动能定理得:此过程中小球对车做的功为,故D正确。‎ ‎4.(2020·福建省福州市八县高二期末联考)如图所示,质量为m的半圆轨道小车静止在光滑的水平地面上,其水平直径AB长度为2R,现将质量也为m的小球从距A点正上方h高处由静止释放,然后由A点经过半圆轨道后从B冲出,能上升的最大高度为(不计空气阻力),则 A.小球和小车组成的系统动量守恒 B.小车向左运动的最大距离为R C.小球离开小车后做斜上抛运动 D.小球落回B点后一定能从A点冲出 ‎【答案】BD ‎【解析】小球与小车组成的系统在水平方向不受外力,水平方向系统动量守恒,但由于小球有向心加速度,系统竖直方向的合外力不为零,所以系统动量不守恒,故A错误;设小车向左运动的最大距离为x。系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv–mv′=0,即得 ‎,解得:x=R,故B正确;小球与小车组成的系统在水平方向动量守恒,则知小球由B点离开小车时系统水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后做竖直上抛运动,故C错误;小球第一次从静止开始上升到空中最高点的过程,由动能定理得:mg(h–)–Wf=0,Wf为小球克服摩擦力做功大小,解得:Wf=mgh,即小球第一次在车中滚动损失的机械能为mgh,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做功小于mgh,机械能损失小于mgh,因此小球从B点落回后一定能从A点冲出,故D正确。‎ ‎5.(2020·广东省深圳市高级中学高三适应性考试)如图所示,水平地面上固定一竖直挡板,倾角为θ、质量为M的斜面体右侧用楔子P固定于地面,一质量为m的球体静止于挡板与斜面之间,设所有接触面均光滑。若将固定斜面体的楔子P取走,小球下落且未脱离斜面的过程中,下列说法正确的是 A.球将做自由落体运动 B.球体与斜面体组成系统动量守恒 C.球体、地球与斜面体组成系统机械能守恒 D.球对竖直挡板压力相对于球静止时减小 ‎【答案】CD ‎【解析】小球下落且未脱离斜面的过程中,竖直挡板和斜面体对球有作用力,所以球做的不是自由落体运动,故A错误;对于球体与斜面体组成系统,由于竖直挡板对系统有作用力,而且竖直方向的合力也不为零,所以系统的合外力不为零,系统的动量不守恒,故B错误;对于球体、地球与斜面体组成系统,由于只有重力做功,所以系统的机械能守恒,故C正确。球静止时,竖直挡板对球的支持力和斜面体对球的支持力的合力等于球的重力。球下落过程中,有竖直向下的加速度,系统处于失重状态,由牛顿运动定律知竖直挡板对球的支持力和斜面体对球的支持力的合力小于球的重力,所以球对竖直挡板压力相对于球静止时减小,故D正确。‎ ‎6.(2020·贵州省凯里市第一中学高二期中)如图所示的装置中,木块B放在光滑的水平桌面上,子弹A以水平速度射入木块后(子弹与木块作用时间极短),子弹立即停在木块内。然后将轻弹簧压缩到最短,已知本块B的质量为M,子弹的质量为m,现将子弹、木块和弹簧合在一起作为研究对象(系统),则从子弹开始入射木块到弹簧压缩至最短的整个过程中 A.系统的动量不守恒,机械能守恒 B.系统的动量守恒,机械能不守恒 C.系统损失的机核能为 D.弹簧最大的弹性势能小于 ‎【答案】CD ‎【解析】由于子弹射入木块过程中,二者之间存在着摩擦,故此过程机械能不守恒,子弹与木块一起压缩弹簧的过程中,速度逐渐减小到零,所以此过程动量不守恒,故整个过程中,动量、机械能均不守恒,故AB错误;对子弹和木块由动量守恒及能量守恒得,,系统损失的机械能为,故C正确;由于子弹和木块碰撞有机械能损失,所以最终弹性势能小于最初的动能,故D正确。‎ ‎7.(2020·四川省宜宾市叙州区第一中学高一期中)如图所示,一个质量为M的长条木块放置在光滑的水平面上,现有一颗质量为m、速度为v0的子弹射入木块并最终留在木块中,在此过程中,木块运动的距离为s,子弹射入木块的深度为d,木块对子弹的平均阻力为f,则下列说法正确的是 A.子弹射入木块前、后系统的机械能守恒 B.子弹射入木块前、后系统的动量守恒 C.f与d之积为系统损失的机械能 D.f与s之积为子弹减少的动能 ‎【答案】BC ‎【解析】根据题意可知,在该过程中由于产生了内能,所以系统机械能减小,A错误;系统所受合外力为零,所以系统动量守恒,B正确;阻力与相对位移之积等于系统损失的机械能,即整个过程中的产热,C正确;根据能量守恒可知,子弹减少的动能一部分转化成了木块的动能,一部分转化成内能,而根据动能定理可知f与s之积为物块增加的动能,小于子弹减少的动能,D错误。‎ ‎8.(2020·湖北省高三调研)如图所示,三个完全相同且质量均为m的正方体叠放在水平面上;锁定后正方体2的4个斜面均与水平方向成45°角。若不计一切摩擦,解除锁定后,正方体2下落过程中未发生转动,下列说法正确的是 A.解除锁定前,正方体2对1的压力大小为mg B.正方体2落地前的速度与正方体1的速度总是大小相等 C.正方体2落地前,1、2、3构成的系统机械能不守恒 D.正方体2落地前,1、2、3构成的系统动量守恒 ‎【答案】AB ‎【解析】解除锁定前,对正方体2分析,由平衡知识可知:,解得,则正方体2对1的压力大小为 mg,选项A正确;由几何关系可知,正方体2落地前下落的高度总等于正方体1向左移动的距离,可知正方体2落地前的速度与正方体1的速度总是大小相等,选项B正确;正方体2落地前,1、2、3构成的系统由于只有2的重力做功,则系统的机械能守恒,选项C错误;正方体2落地前,1、2、3构成的系统水平方向受合外力为零,则水平方向动量守恒,选项D错误。‎ ‎9.(2020·江苏省苏锡常镇四市高三第二次模拟考)在图所示足够长的光滑水平面上,用质量分别为3 kg和1 kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P。现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2 m/s,此时乙尚未与P相撞.‎ ‎(1)求弹簧恢复原长时乙的速度大小;‎ ‎(2)若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值。‎ ‎【答案】v乙=6 m/s I=8 N ‎【解析】(1)当弹簧恢复原长时,设甲、乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:‎ 又知 联立以上方程可得,方向向右。‎ ‎(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为:‎ ‎10.(2020·湖南师范大学附属中学高二期中)如图所示,质量均为M=4 kg的小车A、B,B车上用轻绳挂有质量为m=2‎ ‎ kg的小球C,与B车静止在水平地面上,A车以v0=2 m/s 的速度在光滑水平面上向B车运动,相碰后粘在一起(碰撞时间很短)。求:‎ ‎(1)碰撞过程中系统损失的机械能;‎ ‎(2)碰后小球C第一次回到最低点时的速度大小.‎ ‎【答案】(1)4 J (2)1.6 m/s ‎【解析】(1)设A、B车碰后共同速度为,由动量守恒得:‎ 系统损失的能量为:‎ ‎(2)设小球C再次回到最低点时A、B车速为,小球C速度为,对A、B、C系统由水平方向动量守恒得:‎ 由能量守恒得:‎ 解得:‎
查看更多

相关文章

您可能关注的文档