- 2021-05-14 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学导数题型归纳文科
导数题型归纳 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 例2:设函数 (Ⅰ)求函数f(x)的单调区间和极值; (Ⅱ)若对任意的不等式恒成立,求a的取值范围. 第三种:构造函数求最值 题型特征:恒成立恒成立;从而转化为第一、二种题型 例3:已知函数图象上一点处的切线斜率为, (Ⅰ)求的值;(Ⅱ)当时,求的值域; (Ⅲ)当时,不等式恒成立,求实数t的取值范围。 思路1:要使恒成立,只需,即分离变量 思路2:二次函数区间最值 二、题型一:已知函数在某个区间上的单调性求参数的范围 解法1:转化为在给定区间上恒成立, 回归基础题型 解法2:利用子区间;首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集; 做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集 例4:已知,函数. (Ⅰ)如果函数是偶函数,求的极大值和极小值; (Ⅱ)如果函数是上的单调函数,求的取值范围. 例5、已知函数 (I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。子集思想 三、题型二:根的个数问题 题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题 解题步骤 第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”; 第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可; 例6、已知函数,,且在区间上为增函数. (1)求实数的取值范围;(2)若函数与的图象有三个不同的交点,求实数的取值范围. 例7、已知函数 (1)若是的极值点且的图像过原点,求的极值; (2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。 题2:切线的条数问题====以切点为未知数的方程的根的个数 例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围. 题3:已知在给定区间上的极值点个数则有导函数=0的根的个数 解法:根分布或判别式法 例8 、 例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围. 其它例题: 1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11. (Ⅰ)求函数的解析式;(Ⅱ)若时,恒成立,求实数的取值范围. 2、(根分布与线性规划例子)已知函数 (Ⅰ) 若函数在时有极值且在函数图象上的点处的切线与直线平行, 求的解析式; (Ⅱ) 当在取得极大值且在取得极小值时, 设点所在平面区域为S, 经过原点的直线L将S分为面积比为1:3的两部分, 求直线L的方程. 3、(根的个数问题)已知函数的图象如图所示。 (Ⅰ)求的值; (Ⅱ)若函数的图象在点处的切线方程为,求函数f ( x )的解析式; (Ⅲ)若方程有三个不同的根,求实数a的取值范围。 4、(根的个数问题)已知函数 (1)若函数在处取得极值,且,求的值及的单调区间; (2)若,讨论曲线与的交点个数. 5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数. (Ⅰ) 若函数在处有极值,求的解析式; (Ⅱ) 若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.查看更多