2006-2013广东高考文科数学立体几何大题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2006-2013广东高考文科数学立体几何大题

图5‎ ‎(2006)17、(本题14分)如图5所示,、分别世、的直径,与两圆所在的平面均垂直,.是的直径,,.‎ ‎(I)求二面角的大小;‎ ‎(II)求直线与所成的角.‎ ‎17、解:(Ⅰ)∵AD与两圆所在的平面均垂直,‎ ‎∴AD⊥AB, AD⊥AF,故∠BAD是二面角B—AD—F的平面角,‎ 依题意可知,ABCD是正方形,所以∠BAD=450.‎ 即二面角B—AD—F的大小为450;‎ ‎(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,,0),B(,0,0),D(0,,8),E(0,0,8),F(0,,0)‎ 所以,‎ 设异面直线BD与EF所成角为,则 直线BD与EF所成的角为 ‎(2007) 17.(本小题满分12分)‎ ‎ 已知某几何体的俯视图是如图5所示的矩形,正视图(或称主 视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形.‎ ‎ (1)求该儿何体的体积V;‎ ‎ (2)求该几何体的侧面积S ‎【解析】画出直观图并就该图作必要的说明. …………………3分 ‎ (2)……………7分 (3)………12分 ‎(2008) 18.(本小题满分14分)‎ 如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.‎ ‎(1)求线段PD的长;‎ ‎(2)若PC=R,求三棱锥P-ABC的体积.‎ ‎ 图5‎ ‎18.解:(1)因为是园的直径,所以 ‎ 又△ADP~△BAD.‎ ‎ 所以 ‎ ‎ (2)在中,‎ ‎ 因为 ‎ ‎ 所以 又 ‎ 所以底面 ‎ ‎ ‎ 三棱锥体积为 ‎(2009) 17.(本小题满分13分)‎ 某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.‎ ‎(1)请画出该安全标识墩的侧(左)视图 ‎(2)求该安全标识墩的体积 ‎(3)证明:直线BD平面PEG ‎【解析】(1)侧视图同正视图,如下图所示.‎ ‎   (2)该安全标识墩的体积为:‎ ‎        ‎ ‎   (3)如图,连结EG,HF及 BD,EG与HF相交于O,连结PO.‎ ‎ 由正四棱锥的性质可知,平面EFGH , ‎ ‎ 又 平面PEG ‎ 又 平面PEG;‎ ‎(2010) 18.(本小题满分14分) w_w w. k#s5_u.c o*m 如图4,是半径为的半圆,为直径,点为弧AC的中点,点和点为线段的三等分点,平面外一点满足平面,=. ‎ ‎(1)证明:;‎ ‎(2)求点到平面的距离. w_w*w.k_s_5 u.c*o*m ‎18.法一:(1)证明:∵点B和点C为线段AD的三等分点, ∴点B为圆的圆心 又∵E是弧AC的中点,AC为直径, ∴即 ‎ ∵平面,平面, ∴‎ ‎ 又平面,平面且 ∴平面 ‎ 又∵平面, ∴‎ ‎(2)解:设点B到平面的距离(即三棱锥的高)为.‎ ‎ ∵平面, ∴FC是三棱锥F-BDE的高,且三角形FBC为直角三角形 ‎ 由已知可得,又 ∴‎ ‎ 在中,,故,‎ ‎ ∴,‎ ‎ 又∵平面,故三角形EFB和三角形BDE为直角三角形,‎ ‎ ∴,在中,, ∴,‎ ‎ ∵即,故,‎ 即点B到平面的距离为.‎ ‎ 法二:向量法,此处略,请同学们动手完成。‎ ‎(2011)18.(本小题满分13分)‎ ‎ 图5所示的集合体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.A,A′,B,B′分别为,,,的中点,分别为的中点.‎ ‎(1)证明:四点共面;‎ ‎(2)设G为A A′中点,延长到H′,使得.证明:‎ ‎18.(本小题满分13分)‎ ‎ 证明:(1)中点,‎ ‎ ‎ ‎ 连接BO2‎ ‎ 直线BO2是由直线AO1平移得到 ‎ ‎ ‎ ‎ ‎ 共面。‎ ‎ (2)将AO1延长至H使得O1H=O‎1A,连接 ‎//‎ ‎ 由平移性质得=HB ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎2012年18.(本小题满分13分)‎ 如图5所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=AB,PH为△PAD边上的高。‎ (1) 证明:PH⊥平面ABCD;‎ (2) 若PH=1,AD=,FC=1,求三棱锥E-BCF的体积;‎ (1) 证明:EF⊥平面PAB。*‎ ‎【解析】(1)证明:因为PH为△PAD边上的高,所以PH⊥AD,又因为AB⊥平面PAD,平面PAD,所以AB⊥PH,又因为PHAD=H,所以PH⊥平面ABCD;‎ ‎(2)因为E是PB的中点,所以点E到平面BCF的距离等于点P到平面ABCD距离的一半,即=,又因为=,所以三棱锥E-BCF的体积为;‎ ‎2013年18.(本小题满分13分)‎ 如图4,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中.‎ ‎(1) 证明://平面;‎ ‎(2) 证明:平面;‎ ‎(3) 当时,求三棱锥的体积.‎ ‎18. 解:(1)在等边三角形中, ‎ ‎,在折叠后的三棱锥中也成立,‎ ‎ ,平面,‎ 平面,平面;‎ ‎(2)在等边三角形中,是的中点,所以①,.‎ ‎ 在三棱锥中,,②‎ ‎;‎ ‎(3)由(1)可知,结合(2)可得.‎
查看更多

相关文章

您可能关注的文档