- 2021-05-14 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习专题统计与概率经典
统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A. B. C. D. 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔为( ) A.40 B.30 C.20 D.12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A.3人 B.4人 C.7人 D.12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A. B. C. D. 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式. 二、巩固练习 11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1,这12位同学购书的平均费用是( ) A.元 B.元 C.元 D.元 2、辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在的汽车大约有( ) .辆 . 辆 .辆 .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.开始 ? 是 输入p 结束 输出 否 (第12题图) 为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若,则输出的 . 5 、在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等. (1)求取出的两个球上标号为相邻整数的概率; (2)求取出的两个球上标号之和能被3整除的概率. 6、某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人. 抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图5所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人. (1) 问各班被抽取的学生人数各为多少人? (2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率. 三、高考真题 (2007年广东高考) 8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A. B. C. D. 18.(本小题满分12分) 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据. (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:) 图3 0.040 0.035 0.030 0.025 0.020 0.015 0.010 0.005 0 45 55 65 75 85 95 产品数量 频率/组距 (2008年广东高考) 11.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 . 19.(本小题满分13分) 某初级中学共有学生2000名,各年级男、女生人数如下表: 初一年级 初二年级 初三年级 女生 373 x y 男生 377 370 z 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?12 (3)已知245, 245,求初三年级中女生比男生多的概率. (2009年广东高考) 12.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,,196~200号)。若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人。37, 20 18.(本小题满分13分) 随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7。 (1)根据茎叶图判断哪个班的平均身高较高;乙班平均身高高于甲班 (2)计算甲班的样本方差;57 (3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。w.w (2010年广东高考) 11.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年 的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为 (单位:吨)。根据图2所示的程序框图,若输入分别为 1,1.5,1.5,2,则输出的结果为 . 17.(本小题满分12分) 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示: 文艺节目 新闻节目 总计 20至40岁 40 18 58 大于40岁 15 27 42 总计 55 45 100 (1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?有关 (2)用分层抽样方法在收看新闻节目的观众中随机地抽取5名,大于40岁的观众应该抽取几名?3 (3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20岁至40岁的概率。 (2011年广东高考) 13 .为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率之间的关系: 时间x 1 2 3 4 5 命中率y 0.4 0.5 0.6 0.6 0.4 小李这5天的平均投篮命中率为 ;用线形回归分析的方法,预测小李该月6号打6小时篮球 的投篮命中率为 . 17.(本小题满分13分) 在某次测验中,有6位同学的平均成绩为75分,用表示编号为的同学所得成绩,且前5位同学的成绩如下: 编号n 1 2 3 4 5 成绩 70 76 72 70 72 (1)求第6位同学的成绩,及这6位同学成绩的标准差; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.查看更多