- 2021-05-14 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
近5年四川高考数学解答题汇总立体几何
近5年四川高考数学解答题汇总 立体几何 刘福鑫 整理 2006年(19)(本大题满分12分) 如图,在长方体中,分别是的 中点,分别是的中点, (Ⅰ)求证:面; (Ⅱ)求二面角的大小。 (Ⅲ)求三棱锥的体积。 本小题主要考察长方体的概念、直线和平面、平面和平面的关系等基础知识,以及空间想象能力和推理能力。满分12分 解法一:(Ⅰ)证明:取的中点,连结 ∵分别为的中点 ∵ ∴面,面 ∴面面 ∴面 (Ⅱ)设为的中点 ∵为的中点 ∴ ∴面 作,交于,连结,则由三垂线定理得 从而为二面角的平面角。 在中,,从而 在中, 故:二面角的大小为 (Ⅲ) 作,交于,由面得 ∴面 ∴在中, ∴ 方法二:以为原点,所在直线分别为轴,轴,轴,建立直角坐标系,则 ∵分别是的中点 ∴ (Ⅰ) 取,显然面 ,∴ 又面 ∴面 (Ⅱ)过作,交于,取的中点,则∵ 设,则 又 由,及在直线上,可得: 解得 ∴ ∴ 即 ∴与所夹的角等于二面角的大小 故:二面角的大小为 (Ⅲ)设为平面的法向量,则 又 ∴ 即 ∴可取 ∴点到平面的距离为 ∵, ∴ ∴ 2007年(19)(本小题满分12分)如图,是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°. (Ⅰ)求证:平面⊥平面; (Ⅱ)求二面角的大小; (Ⅲ)求三棱锥的体积. (19)本题主要考察异面直线所成的角、平面与平面垂直、二面角、三棱锥体积等有关知识,考察思维能力和空间想象能力、应用向量知识解决数学问题的能力、化归转化能力和推理运算能力。 解法一: (Ⅰ)∵ ∴, 又∵ ∴ (Ⅱ)取的中点,则,连结, ∵,∴,从而 作,交的延长线于,连结,则由三垂线定理知,, 从而为二面角的平面角 直线与直线所成的角为 ∴ 在中,由余弦定理得 在中, 在中, 在中, 故二面角的平面角大小为 (Ⅲ)由(Ⅱ)知,为正方形 ∴ 解法二:(Ⅰ)同解法一 (Ⅱ)在平面内,过作,建立空间直角坐标系(如图) 由题意有,设, 则 由直线与直线所成的解为,得 ,即,解得 ∴,设平面的一个法向量为, 则,取,得 平面的法向量取为 设与所成的角为,则 显然,二面角的平面角为锐角, 故二面角的平面角大小为 (Ⅲ)取平面的法向量取为,则点A到平面的距离 ∵,∴ 2008年19.(本小题满分12分) 如,平面平面,四边形与都是直角梯形, , (Ⅰ)证明:四点共面; (Ⅱ)设,求二面角的大小; 【解1】:(Ⅰ)延长交的延长线于点,由得 延长交的延长线于 同理可得 故,即与重合 因此直线相交于点,即四点共面。 (Ⅱ)设,则, 取中点,则,又由已知得,平面 故,与平面内两相交直线都垂直。 所以平面,作,垂足为,连结 由三垂线定理知为二面角的平面角。 故 所以二面角的大小 【解2】:由平面平面,,得平面,以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系 (Ⅰ)设,则 故,从而由点,得 故四点共面 (Ⅱ)设,则, 在上取点,使,则 从而 又 在上取点,使,则 从而 故与的夹角等于二面角的平面角, 所以二面角的大小 【点评】:此题重点考察立体几何中四点共面问题和求二面角的问题,考察空间想象能力,几何逻辑推理能力,以及计算能力; 【突破】:熟悉几何公理化体系,准确推理,注意书写格式是顺利进行解法1的关键;在解法2中,准确的建系,确定点坐标,熟悉向量的坐标表示,熟悉空间向量的计算在几何位置的证明,在有关线段,角的计算中的计算方法是解题的关键。 2009年19(本小题满分12分)如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形, (I)求证:; (II)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由; (III)求二面角的大小。 本小题主要考察平面与平面垂直、直线与平面垂直、直线与平面平行、二面角 等基础知识,考察空间想象能力、逻辑推理能力和数学探究意识,考察应用向量知识解决数学问题的能力。 解法一: (Ⅰ)因为平面⊥平面,平面, 平面平面, 所以⊥平面 所以⊥. 因为为等腰直角三角形, , 所以 又因为, 所以, 即⊥, 所以⊥平面。 ……………………………………4分 (Ⅱ)存在点,当为线段AE的中点时,PM∥平面 取BE的中点N,连接AN,MN,则MN∥=∥=PC 所以PMNC为平行四边形,所以PM∥CN 因为CN在平面BCE内,PM不在平面BCE内, 所以PM∥平面BCE ……………………………………8分 (Ⅲ)由EA⊥AB,平面ABEF⊥平面ABCD,易知,EA⊥平面ABCD 作FG⊥AB,交BA的延长线于G,则FG∥EA。从而,FG⊥平面ABCD 作GH⊥BD于G,连结FH,则由三垂线定理知,BD⊥FH 因此,∠AEF为二面角F-BD-A的平面角 因为FA=FE, ∠AEF=45°, 所以∠AFE=90°,∠FAG=45°. 设AB=1,则AE=1,AF=. w.w.w.k.s.5.u.c.o.m FG=AF·sinFAG= 在Rt△FGH中,∠GBH=45°,BG=AB+AG=1+=, GH=BG·sinGBH=·= 在Rt△FGH中,tanFHG= = 故二面角F-BD-A的大小为arctan. ………………………………12分 解法二: (Ⅰ)因为△ABE为等腰直角三角形,AB=AE, 所以AE⊥AB. 又因为平面ABEF⊥平面ABCD,AE平面ABEF, 平面ABEF∩平面ABCD=AB, 所以AE⊥平面ABCD. 所以AE⊥AD. 因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz. 设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) , E ( 0, 0, 1 ), C ( 1, 1, 0 ). 因为FA=FE, ∠AEF = 45°, 所以∠AFE= 90°. 从而,. 所以,,. ,. 所以EF⊥BE, EF⊥BC. 因为BE平面BCE,BC∩BE=B , 所以EF⊥平面BCE. (Ⅱ) M(0,0,).P(1, ,0). 从而=(,). 于是 所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内, 故PM∥平面BCE. ………………………………8分 (Ⅲ) 设平面BDF的一个法向量为,并设=(x,y,z) =(1,1,0), 即 去y=1,则x=1,z=3,从=(0,0,3) 取平面ABD的一个法向量为=(0,0,1) 故二面角F-BD-A的大小为. ……………………………………12分 2010年(18)(本小题满分12分)w_w w. k#s5_u.c o*m 已知正方体ABCD-A'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点. (Ⅰ)求证:OM为异面直线AA'和BD'的公垂线; (Ⅱ)求二面角M-BC'-B'的大小; (Ⅲ)求三棱锥M-OBC的体积.查看更多