圆锥曲线高考真题专练含答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

圆锥曲线高考真题专练含答案

‎2018年数学全国1卷 设椭圆的右焦点为,过的直线与交于两点,点的坐标为.‎ ‎(1)当与轴垂直时,求直线的方程;‎ ‎(2)设为坐标原点,证明:.‎ 解:(1)由已知得,l的方程为x=1.‎ 由已知可得,点A的坐标为或.‎ 所以AM的方程为或.‎ ‎(2)当l与x轴重合时,.‎ 当l与x轴垂直时,OM为AB的垂直平分线,所以.‎ 当l与x轴不重合也不垂直时,设l的方程为,,‎ 则,直线MA,MB的斜率之和为.‎ 由得 ‎.‎ 将代入得 ‎.‎ 所以,.‎ 则.‎ 从而,故MA,MB的倾斜角互补,所以.‎ 综上,.‎ 已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.‎ ‎(1)求C的方程;‎ ‎(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.‎ 解:‎ ‎(1)由于,两点关于y轴对称,故由题设知C经过,两点.‎ 又由知,C不经过点P1,所以点P2在C上.‎ 因此,解得.‎ 故C的方程为.‎ ‎(2)设直线P2A与直线P2B的斜率分别为k1,k2,‎ 如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,).‎ 则,得,不符合题设.‎ 从而可设l:().将代入得 由题设可知.‎ 设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.‎ 而 ‎.‎ 由题设,故.‎ 即.‎ 解得.‎ 当且仅当时,,欲使l:,即,‎ 所以l过定点(2,)‎ ‎2016年数学全国1卷 设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.‎ ‎(I)证明为定值,并写出点E的轨迹方程;‎ ‎(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.‎ ‎【答案】(I)();(II)‎ ‎【解析】‎ 试题分析:(I)利用椭圆定义求方程;(II)把面积表示为关于斜率k的函数,再求最值。‎ 试题解析:(I)因为,,故,‎ 所以,故.‎ 又圆的标准方程为,从而,所以.‎ 由题设得,,,由椭圆定义可得点的轨迹方程为:‎ ‎().‎ ‎(II)当与轴不垂直时,设的方程为,,.‎ 由得.‎ 则,.‎ 所以.‎ 过点且与垂直的直线:,到的距离为,所以 ‎.故四边形的面积 ‎.‎ 可得当与轴不垂直时,四边形面积的取值范围为.‎ 当与轴垂直时,其方程为,,,四边形的面积为12.‎ 综上,四边形面积的取值范围为.‎ ‎2013年数学全国1卷 已知圆:,圆:,动圆与圆外切并且与圆内切,圆心的轨迹为曲线 C.‎ ‎(Ⅰ)求C的方程;‎ ‎(Ⅱ)是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|. ‎ ‎【解析】由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.‎ 设动圆的圆心为(,),半径为R.‎ ‎(Ⅰ)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,‎ 由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.‎ ‎(Ⅱ)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,‎ 当且仅当圆P的圆心为(2,0)时,R=2.‎ ‎∴当圆P的半径最长时,其方程为,‎ 当的倾斜角为时,则与轴重合,可得|AB|=.‎ 当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设:,由于圆M相切得,解得.‎ 当=时,将代入并整理得,解得=,∴|AB|==.‎ 当=-时,由图形的对称性可知|AB|=,‎ 综上,|AB|=或|AB|=.‎ ‎2012年数学全国1卷 设抛物线的焦点为,准线为,为上一点,已知以为圆心,为半径的圆交于两点.‎ (1) 若,的面积为,求的值及圆的方程;‎ (2) 若三点在同一直线上,直线与平行,且与之有一个公共点,求坐标原点到距离的比值.‎ ‎【解析】(1)由对称性知:是等腰直角,斜边 ‎ 点到准线的距离 ‎ ‎ ‎ 圆的方程为 ‎ (2)由对称性设,则 ‎ 点关于点对称得:‎ ‎ 得:,直线 ‎ 切点 ‎ 直线 坐标原点到距离的比值为。‎ 已知为坐标原点,为椭圆:在轴正半轴上的焦点,过且斜率为的直线与交与、两点,点满足.‎ ‎(I)证明:点在上;‎ ‎(II)设点关于点的对称点为,证明:、、、四点在同一圆上.‎ ‎【命题意图】本题考查直线方程、平面向量的坐标运算、点与曲线的位置关系、曲线交点坐标求法及四点共圆的条件。‎ ‎【解析】(I),的方程为,代入并化简得 ‎. …………………………2分 设,‎ 则 ‎ 由题意得 所以点的坐标为.‎ 经验证点的坐标满足方程,故点在椭圆上 …6分 ‎(II)由和题设知,,的垂直平分线的方程为 ‎. ①‎ 设的中点为,则,的垂直平分线的方程为 ‎. ②‎ 由①、②得、的交点为. …………………………9分 ‎,‎ ‎,‎ ‎,‎ ‎,‎ ‎,‎ 故 ,‎ 又 , ,‎ 所以 ,‎ 由此知、、、四点在以为圆心,为半径的圆上. ……………12分 ‎ 如图,已知抛物线与圆相交于、、、四个点。‎ ‎ (I)求得取值范围;‎ ‎ (II)当四边形的面积最大时,求对角线、的交点坐标 分析:(I)这一问学生易下手。将抛物线与圆的方程联立,消去,整理得.............(*)‎ 抛物线与圆相交于、、、四个点的充要条件是:方程(*)有两个不相等的正根即可.易得.考生利用数形结合及函数和方程的思想来处理也可以.‎ ‎(II)考纲中明确提出不考查求两个圆锥曲线的交点的坐标。因此利用设而不求、整体代入的 方法处理本小题是一个较好的切入点.‎ ‎ 设四个交点的坐标分别为、、、。‎ 则由(I)根据韦达定理有,‎ 则 ‎ ‎ 令,则 下面求的最大值。‎ 方法一:利用三次均值求解。三次均值目前在两纲中虽不要求,但在处理一些最值问题有时很方便。它的主要手段是配凑系数或常数,但要注意取等号的条件,这和二次均值类似。‎ ‎ ‎ ‎ 当且仅当,即时取最大值。经检验此时满足题意。‎ 方法二:利用求导处理,这是命题人的意图。具体解法略。‎ 下面来处理点的坐标。设点的坐标为:‎ 由三点共线,则得。‎ 设抛物线的焦点为,过且斜率为的直线与交于,两点,.‎ ‎(1)求的方程;‎ ‎(2)求过点,且与的准线相切的圆的方程.‎ 解:(1)由题意得,l的方程为.‎ 设,‎ 由得.‎ ‎,故.‎ 所以.‎ 由题设知,解得(舍去),.‎ 因此l的方程为.‎ ‎(2)由(1)得AB的中点坐标为,所以AB的垂直平分线方程为,即.‎ 设所求圆的圆心坐标为,则 解得或 因此所求圆的方程为或.‎ 设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为N,点P满足.‎ (1) 求点P的轨迹方程;‎ (2) 设点Q在直线x=-3上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F. ‎ 解 ‎(1)设P(x,y),M(x0,y0),设N(x0,0), ‎ 由得 因为M(x0,y0)在C上,所以 因此点P的轨迹方程为 ‎(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则 ‎,‎ 由得,又由(1)知,故 ‎3+3m-tn=0‎ 所以,即.学.科网又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.‎ 已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.‎ ‎(I)当t=4,时,求△AMN的面积;‎ ‎(II)当时,求k的取值范围.‎ ‎【解析】‎ 试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.‎ 试题解析:(I)设,则由题意知,当时,的方程为,.‎ 由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.‎ 将代入得.解得或,所以.‎ 因此的面积.‎ ‎(II)由题意,,.‎ 将直线的方程代入得 ‎.‎ 由得,故.‎ 由题设,直线的方程为,故同理可得,‎ 由得,即.‎ 当时上式不成立,‎ 因此.等价于,‎ 即.由此得,或,解得.‎ 因此的取值范围是.‎ 考点:椭圆的性质,直线与椭圆的位置关系. ‎ 平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.‎ ‎(1)求M的方程;‎ ‎(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.‎ 解:(1)设A(x1,y1),B(x2,y2),P(x0,y0),‎ 则,,,‎ 由此可得.‎ 因为x1+x2=2x0,y1+y2=2y0,,‎ 所以a2=2b2.‎ 又由题意知,M的右焦点为(,0),故a2-b2=3.‎ 因此a2=6,b2=3.‎ 所以M的方程为.‎ ‎(2)由 解得或 因此|AB|=.‎ 由题意可设直线CD的方程为 y=,‎ 设C(x3,y3),D(x4,y4).‎ 由得3x2+4nx+2n2-6=0.‎ 于是x3,4=.‎ 因为直线CD的斜率为1,‎ 所以|CD|=.‎ 由已知,四边形ACBD的面积.‎ 当n=0时,S取得最大值,最大值为.‎ 所以四边形ACBD面积的最大值为.‎ 已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线l与C交于A、B两点,点P满足 .‎ ‎(I) 证明:点P在C上;‎ ‎(II)设点P关于点O的对称点为Q,证明四点在同一圆上。‎ 解:‎ (I) ‎,l的方程为,代入并化简得 ……2分 设, 则, 得 得 所以点P的坐标为,验证得P在椭圆上。……6分 (II) 由,知,的垂直平分线的方程为 设AB的中点为M,则,AB的垂直平分线的方程为 联立 ,得, ……9分 ‎ ……12分 己知斜率为1的直线l与双曲线C:相交于B、D两点,且BD的中点为.‎ ‎ (Ⅰ)求C的离心率;‎ ‎ (Ⅱ)设C的右顶点为A,右焦点为F,,证明:过A、B、D三点的圆与x轴相切.‎ 解:‎ ‎ (I)由题设知,的方程为 代入C的方程,并化简得,‎ 设 则①‎ 由为B D的中点知故 即 ②‎ 故 所以C的离心率 ‎ (II)由①、②知,C的方程为:‎ A(a,0),F(2a,0),‎ 故不妨设 ‎ …………9分 又 故 解得(舍去)‎ 故 连结MA,则由A(1,0),M(1,3)知|MA|=3,从而 MA=MB=MD,且MA⊥x轴,因此以M为圆主,MA 为半径的圆经地A、B、D三点,且在点A处与x轴相切,‎ 所以过A、B、D三点的圆与x轴相切。 …………12分 已知斜率为的直线与椭圆交于,两点,线段的中点为.‎ ‎(1)证明:;‎ ‎(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.‎ 解:(1)设,则.‎ 两式相减,并由得 ‎.‎ 由题设知,于是 ‎.①‎ 由题设得,故.‎ ‎(2)由题意得,设,则 ‎.‎ 由(1)及题设得.‎ 又点P在C上,所以,从而,.‎ 于是 ‎.‎ 同理.‎ 所以.‎ 故,即成等差数列.‎ 设该数列的公差为d,则 ‎.②‎ 将代入①得.‎ 所以l的方程为,代入C的方程,并整理得.‎ 故,代入②解得.‎ 所以该数列的公差为或.‎ 已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.‎ ‎(1)证明:坐标原点O在圆M上;‎ ‎(2)设圆M过点P(4,-2),求直线l与圆M的方程.‎ 解 ‎(1)设 由可得 又=4‎ 因此OA的斜率与OB的斜率之积为 所以OA⊥OB 故坐标原点O在圆M上.‎ ‎(2)由(1)可得 故圆心M的坐标为,圆M的半径 由于圆M过点P(4,-2),因此,故 即 由(1)可得,‎ 所以,解得.‎ 当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为 当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为 矩形的两条对角线相交于点,边所在直线的方程为,点在边所在直线上.‎ ‎(I)求边所在直线的方程;‎ ‎(II)求矩形外接圆的方程;‎ ‎(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.‎ 解:(I)因为边所在直线的方程为,且与垂直,所以直线的斜率为.‎ 又因为点在直线上,‎ 所以边所在直线的方程为.‎ ‎.‎ ‎(II)由解得点的坐标为,‎ 因为矩形两条对角线的交点为.‎ 所以为矩形外接圆的圆心.‎ 又.‎ 从而矩形外接圆的方程为.‎ ‎(III)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,‎ 所以,‎ 即.‎ 故点的轨迹是以为焦点,实轴长为的双曲线的左支.‎ 因为实半轴长,半焦距.‎ 所以虚半轴长.‎ 从而动圆的圆心的轨迹方程为.‎ 在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.‎ ‎(Ⅰ)求动点P的轨迹方程;‎ ‎(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。‎ ‎(I)解:因为点B与A关于原点对称,所以点得坐标为.‎ ‎ 设点的坐标为 ‎ 由题意得 ‎ 化简得 .‎ ‎ 故动点的轨迹方程为 ‎(II)解法一:设点的坐标为,点,得坐标分别为,.‎ ‎ 则直线的方程为,直线的方程为 令得,.‎ 于是得面积 ‎ ‎ 又直线的方程为,,‎ 点到直线的距离.‎ 于是的面积 ‎ ‎ 当时,得 又,‎ 所以=,解得。‎ 因为,所以 故存在点使得与的面积相等,此时点的坐标为.‎ 解法二:若存在点使得与的面积相等,设点的坐标为 ‎ 则.‎ ‎ 因为,‎ ‎ 所以 ‎ 所以 ‎ 即 ,解得 ‎ 因为,所以 ‎ 故存在点S使得与的面积相等,此时点的坐标为.‎ 已知曲线.‎ ‎(1)若曲线是焦点在轴上的椭圆,求的取值范围;‎ ‎(2)设,曲线与轴的交点为,(点位于点的上方),直线与 曲线交于不同的两点,,直线与直线交于点,求证:,,‎ 三点共线.‎ 解:(1)原曲线方程可化简得:‎ 由题意可得:,解得:‎ ‎(2)由已知直线代入椭圆方程化简得:,‎ ‎,解得: 由韦达定理得:①,,②‎ 设,,‎ 方程为:,则,‎ ‎,,‎ 欲证三点共线,只需证,共线 即成立,化简得:‎ 将①②代入易知等式成立,则三点共线得证。‎ 已知椭圆,‎ (1) 求椭圆的离心率.‎ (2) 设为原点,若点在椭圆上,点在直线上,且,求直线与圆 的位置关系,并证明你的结论.‎ 解:(I)由题意,椭圆C的标准方程为。‎ ‎ 所以,从而。因此。‎ 故椭圆C的离心率。‎ ‎(Ⅱ) 直线AB与圆相切。证明如下:‎ 设点A,B的坐标分别为,,其中。‎ 因为,所以,即,解得。‎ ‎ 当时,,代入椭圆C的方程,得,‎ ‎ 故直线AB的方程为。圆心O到直线AB的距离。‎ ‎ 此时直线AB与圆相切。‎ ‎ 当时,直线AB的方程为,‎ ‎ 即,‎ ‎ 圆心0到直线AB的距离 ‎ ,又,‎ 故 ‎ ‎ 此时直线AB与圆相切.‎ 已知椭圆:()的离心率为,点,和点都 在椭圆上,直线交轴于点M. ‎ ‎(Ⅰ)求椭圆的方程,并求点的坐标(用,表示);‎ ‎(Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点Q,使得若存在,求点的坐标;若不不存在,说明理由.‎ ‎ ‎ 解:(Ⅰ)由题意知,,又,解得,‎ 所以的方程为.‎ 的斜率,所以方程,‎ 令,解得,所以 ‎(Ⅱ),同(I)可得,‎ ‎,,‎ 因为所以,‎ 设则即,‎ 又在椭圆上,所以,即,‎ 所以,故存在使得 已知椭圆C:()的离心率为,,,,△OAB的面积为1.‎ ‎(I)求椭圆C的方程;‎ ‎(II)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.‎ 求证:为定值.‎ ‎【答案】(I);(II)见解析.‎ ‎【解析】‎ 试题分析:(I)根据离心率为,即,OAB的面积为1,即,椭圆中列方程组进行求解;(II)根据已知条件分别求出的值,求其乘积为定值.‎ 试题解析:(I)由题意得解得.‎ 所以椭圆的方程为.‎ ‎(II)由(I)知,,‎ 设,则.‎ 当时,直线的方程为.‎ 令,得,从而.‎ 直线的方程为.‎ 令,得,从而.‎ 所以 ‎.‎ 当时,,‎ 所以.‎ 综上,为定值.‎ ‎【考点】椭圆方程、直线与椭圆的位置关系、运算求解能力 ‎【名师点睛】解决定值、定点的方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元思想的运用可有效地简化运算.‎ 已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.‎ ‎(Ⅰ)求直线l的斜率的取值范围;‎ ‎(Ⅱ)设O为原点,,,求证:为定值.‎ 解:(Ⅰ)因为抛物线y2=2px经过点P(1,2),‎ 所以4=2p,解得p=2,所以抛物线的方程为y2=4x.‎ 由题意可知直线l的斜率存在且不为0,‎ 设直线l的方程为y=kx+1(k≠0).‎ 由得.‎ 依题意,解得k<0或0b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.‎ ‎(I)求椭圆的方程;‎ ‎(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. ‎ 若(O为原点) ,求k的值.‎ ‎(Ⅰ)解:设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.‎ 所以,椭圆的方程为.‎ ‎(Ⅱ)解:设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.‎ 由方程组消去x,可得.易知直线AB的方程为x+y–2=0,‎ 由方程组 消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.‎ 所以,k的值为 ‎ 已知m>1,直线,‎ 椭圆,分别为椭圆的左、右焦点. ‎ ‎(Ⅰ)当直线过右焦点时,求直线的方程;‎ ‎(Ⅱ)设直线与椭圆交于两点,,‎ ‎ 的重心分别为.若原点在以线段 为直径的圆内,求实数的取值范围. ‎ 解析:本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。‎ ‎ (Ⅰ)解:因为直线经过,‎ 所以,得,‎ 又因为,‎ 所以,‎ 故直线的方程为。‎ ‎(Ⅱ)解:设。‎ ‎ 由,消去得 ‎ 则由,知,‎ 且有。‎ 由于,‎ 故为的中点,‎ 由,‎ 可知 设是的中点,则,‎ 由题意可知 即 即 而 ‎ ‎ 所以 即 又因为且 所以。‎ 所以的取值范围是。‎ 已知抛物线=,圆的圆心为点M。‎ ‎(Ⅰ)求点M到抛物线的准线的距离;‎ ‎(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂足于AB,求直线的方程.‎ ‎(Ⅰ)解:由题意可知,抛物线的准线方程为:所以圆心M(0,4)到抛物线的距离是 ‎ (Ⅱ)解:设P(x0, x02),A()B(),由题意得设过点P的圆C2的切线方程为y-x0=k(x- x0) ‎ ‎ 即, ①‎ ‎ 则 ‎ 即 ‎ 设PA,PB的斜率为,则是上述方程的两根,所以 ‎ ,‎ ‎ 将①代入得,‎ ‎ 由于是此方程的根,故所以 由MP⊥AB,得,解得 即点P的坐标为,所以直线l的方程为。‎ 设抛物线的焦点为,准线为,,已知以为圆心,‎ 为半径的圆交于两点;‎ ‎(1)若,的面积为;求的值及圆的方程;‎ ‎(2)若三点在同一直线上,直线与平行,且与只有一个公共点,‎ 求坐标原点到距离的比值。‎ ‎【解析】(1)由对称性知:是等腰直角,斜边 ‎ 点到准线的距离 ‎ ‎ ‎ 圆的方程为 ‎ (2)由对称性设,则 ‎ 点关于点对称得:‎ ‎ 得:,直线 ‎ 切点 ‎ 直线 坐标原点到距离的比值为。‎ 如图,点是椭圆()的一个顶点,的长轴是圆的直径.,是过点且互相垂直的两条直线,其中交圆于,两点,交椭圆于另一点.‎ ‎(Ⅰ)求椭圆的方程;‎ ‎(Ⅱ)求面积取最大值时直线的方程.‎ ‎(Ⅰ)由题意得 ‎ 所以椭圆的方程为.‎ ‎(Ⅱ)设,,.由题意知直线的斜率存在,不妨设为,则直线的方程为.‎ ‎ 又圆,故点到直线的距离,‎ ‎ 所以.‎ ‎ 又,故直线的方程为.‎ ‎ 由消去,整理得,‎ ‎ 故.‎ ‎ 所以.‎ ‎ 设的面积为,则,‎ ‎ 所以,‎ 当且仅当时取等号.‎ 所以直线的方程为.‎ 如图,设椭圆(a>1).‎ ‎(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);‎ ‎(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.‎ ‎【答案】(I);(II).‎ ‎(II)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足 ‎.‎ 记直线,的斜率分别为,,且,,.‎ 由(I)知,,,‎ 故,‎ ‎ 如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.‎ ‎(Ⅰ)设AB中点为M,证明:PM垂直于y轴;‎ ‎(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.‎ ‎(Ⅰ)设,,.‎ 因为,的中点在抛物线上,所以,为方程 即的两个不同的实数根.‎ 所以.‎ 因此,垂直于轴.‎ ‎(Ⅱ)由(Ⅰ)可知 所以,.‎ 因此,的面积.‎ 因为,所以.‎ 因此,面积的取值范围是.‎ 已知椭圆C:(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P.‎ ‎(1)求椭圆C的离心率;‎ ‎(2)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.‎ 解:(1)由椭圆定义知,‎ ‎2a‎=|PF1|+|PF2|=,‎ 所以.‎ 又由已知,c=1.‎ 所以椭圆C的离心率.‎ ‎(2)由(1)知,椭圆C的方程为+y2=1.‎ 设点Q的坐标为(x,y).‎ ‎(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1),(0,-1)两点,此时点Q的坐标为.‎ ‎(2)当直线l与x轴不垂直时,设直线l的方程为y=kx+2.‎ 因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),‎ 则|AM|2=(1+k2)x12,|AN|2=(1+k2)x22.‎ 又|AQ|2=x2+(y-2)2=(1+k2)x2.‎ 由,得 ‎,‎ 即.①‎ 将y=kx+2代入+y2=1中,得 ‎(2k2+1)x2+8kx+6=0.②‎ 由Δ=(8k)2-4×(2k2+1)×6>0,得k2>.‎ 由②可知,x1+x2=,x1x2=,‎ 代入①中并化简,得.③‎ 因为点Q在直线y=kx+2上,‎ 所以,代入③中并化简,得10(y-2)2-3x2=18.‎ 由③及k2>,可知0<x2<,即x∈∪.‎ 又满足10(y-2)2-3x2=18,‎ 故x∈.‎ 由题意,Q(x,y)在椭圆C内,‎ 所以-1≤y≤1.‎ 又由10(y-2)2=18+3x2有(y-2)2∈且-1≤y≤1,‎ 则y∈.‎ 所以,点Q的轨迹方程为10(y-2)2-3x2=18,其中x∈,y∈.‎ 已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l: 与椭圆E有且只有一个公共点T.‎ ‎(I)求椭圆E的方程及点T的坐标;‎ ‎(II)设O是坐标原点,直线平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数λ,使得,并求λ的值.‎ ‎【答案】(I),点T坐标为(2,1);(II).‎ ‎【解析】‎ 试题分析:本题考查椭圆的标准方程及其几何性质,考查学生的分析问题、解决问题的能力和数形结合的思想.第(I)问,利用直线和椭圆只有一个公共点,联立方程,消去y得关于x的方程有两个相等的实数根,解出b的值,从而得到椭圆E的方程;第(II)问,利用椭圆的几何性质,数形结合,根据根与系数的关系,进行求解.‎ 试题解析:(I)由已知,,则椭圆E的方程为.‎ 由方程组 得.①‎ 方程①的判别式为,由,得,‎ 此时方程①的解为,‎ 所以椭圆E的方程为.‎ 点T坐标为(2,1).‎ ‎(II)由已知可设直线的方程为,‎ 由方程组 可得 所以P点坐标为(),.‎ 所以,‎ 同理,‎ 所以 ‎.‎ 故存在常数,使得.‎ 在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,。‎ ‎(1)设动点P满足,求点P的轨迹;‎ ‎(2)设,求点T的坐标;‎ ‎(3)设,求证:直线MN必过x轴上的一定点(其坐 标与m无关)。‎ ‎[解析] 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。‎ ‎(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。‎ 由,得 化简得。‎ 故所求点P的轨迹为直线。‎ ‎(2)将分别代入椭圆方程,以及得:M(2,)、N(,)‎ 直线MTA方程为:,即,‎ 直线NTB 方程为:,即。‎ 联立方程组,解得:,‎ 所以点T的坐标为。‎ ‎(3)点T的坐标为 直线MTA方程为:,即,‎ 直线NTB 方程为:,即。‎ 分别与椭圆联立方程组,同时考虑到,‎ 解得:、。‎ ‎(方法一)当时,直线MN方程为:‎ ‎ 令,解得:。此时必过点D(1,0);‎ 当时,直线MN方程为:,与x轴交点为D(1,0)。‎ 所以直线MN必过x轴上的一定点D(1,0)。‎ ‎(方法二)若,则由及,得,‎ 此时直线MN的方程为,过点D(1,0)。‎ 若,则,直线MD的斜率,‎ 直线ND的斜率,得,所以直线MN过D点。‎ 因此,直线MN必过轴上的点(1,0)。‎ 如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点A,过点A作轴的垂线交椭圆于另一点C,连结.21世纪教育网版权所有 F1‎ F2‎ O x y B C A ‎(第17题)‎ ‎(1)若点C的坐标为,且,求椭圆的方程;‎ ‎(2)若求椭圆离心率e的值.‎ 如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左 准线l的距离为3.‎ ‎ (1)求椭圆的标准方程;‎ ‎ (2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.‎ ‎【答案】(1)(2)或.‎ ‎(2)当轴时,,又,不合题意.‎ 当与轴不垂直时,设直线的方程为,,,‎ 将的方程代入椭圆方程,得,‎ 则,的坐标为,且 ‎.‎ 若,则线段的垂直平分线为轴,与左准线平行,不合题意.‎ 从而,故直线的方程为,‎ 则点的坐标为,从而.‎ 因为,所以,解得.‎ 此时直线方程为或.‎ 考点:椭圆方程,直线与椭圆位置关系 如图,在平面直角坐标系中,已知以为圆心的圆:及其上一点A(2, 4).‎ ‎(1)设圆N与x轴相切,与圆外切,且圆心N在直线x=6上,求圆N的标准方程;‎ ‎(2)设平行于OA的直线l与圆相交于B,C两点,且BC=OA,求直线l的方程;‎ ‎(3)设点T(t,0)满足:存在圆上的两点P和Q,使得,求实数t的取值范围.‎ ‎(第18题) ‎ ‎【答案】(1)(2)(3)‎ ‎ (2)因为直线l∥OA,所以直线l的斜率为.‎ 设直线l的方程为y=2x+m,即2x-y+m=0,‎ 则圆心M到直线l的距离 ‎ ‎ 因为 ‎ 而 ‎ 所以,解得m=5或m=-15.‎ 故直线l的方程为2x-y+5=0或2x-y-15=0.‎ ‎(3)设 ‎ 因为,所以 ……①‎ 因为点Q在圆M上,所以 …….② ‎ 将①代入②,得.‎ 于是点既在圆M上,又在圆上,‎ 从而圆与圆没有公共点,‎ 所以 解得.‎ 因此,实数t的取值范围是. ‎ 如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.‎ ‎(1)求椭圆E的标准方程;‎ ‎(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.‎ 解:(1)设椭圆的半焦距为c. ‎ 因为椭圆E的离心率为,两准线之间的距离为8,所以,, ‎ 解得,于是, ‎ 因此椭圆E的标准方程是.‎ ‎(2)由(1)知,,.‎ 设,因为点为第一象限的点,故.‎ 当时,与相交于,与题设不符.‎ 当时,直线的斜率为,直线的斜率为.‎ 因为,,所以直线的斜率为,直线的斜率为,‎ 从而直线的方程:, ①‎ 直线的方程:. ②‎ 由①②,解得,所以.‎ 因为点在椭圆上,由对称性,得,即或.‎ 又在椭圆E上,故.‎ 由,解得;,无解.‎ 因此点P的坐标为.‎ 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.‎ ‎(1)求椭圆C及圆O的方程;‎ ‎(2)设直线l与圆O相切于第一象限内的点P.‎ ‎①若直线l与椭圆C有且只有一个公共点,求点P的坐标;‎ ‎②直线l与椭圆C交于两点.若的面积为,求直线l的方程.‎ 解:(1)因为椭圆C的焦点为,‎ 可设椭圆C的方程为.又点在椭圆C上,‎ 所以,解得 因此,椭圆C的方程为.‎ 因为圆O的直径为,所以其方程为.‎ ‎(2)①设直线l与圆O相切于,则,‎ 所以直线l的方程为,即.‎ 由,消去y,得 ‎.(*)‎ 因为直线l与椭圆C有且只有一个公共点,‎ 所以.‎ 因为,所以.‎ 因此,点P的坐标为.‎ ‎②因为三角形OAB的面积为,所以,从而.‎ 设,‎ 由(*)得,‎ 所以 ‎.‎ 因为,‎ 所以,即,‎ 解得舍去),则,因此P的坐标为.‎ 综上,直线l的方程为.‎
查看更多

相关文章

您可能关注的文档