秘传高考数学通用解题模型

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

秘传高考数学通用解题模型

秘传高考通用解题模型(I)‎ ‎ ‎ ‎1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。‎ ‎ ‎ 中元素各表示什么?‎ ‎ A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 ‎2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 ‎ 注重借助于数轴和文氏图解集合问题。‎ ‎ 空集是一切集合的子集,是一切非空集合的真子集。‎ ‎ ‎ ‎ ‎ ‎ ‎ 显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。‎ ‎3. 注意下列性质:‎ ‎ 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,……an,都有2种选择,所以,总共有种选择, 即集合A有个子集。‎ 当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 ‎ (3)德摩根定律:‎ 有些版本可能是这种写法,遇到后要能够看懂 ‎ ‎ ‎4. 你会用补集思想解决问题吗?(排除法、间接法)‎ ‎ ‎ 的取值范围。‎ ‎ ‎ 注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程 的2个根 ‎5、熟悉命题的几种形式、‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 命题的四种形式及其相互关系是什么?‎ ‎ (互为逆否关系的命题是等价命题。)‎ ‎ 原命题与逆否命题同真、同假;逆命题与否命题同真同假。‎ ‎6、熟悉充要条件的性质(高考经常考)‎ ‎ 满足条件,满足条件,‎ 若 ;则是的充分非必要条件;‎ 若 ;则是的必要非充分条件;‎ 若 ;则是的充要条件;‎ 若 ;则是的既非充分又非必要条件;‎ ‎ ‎ ‎7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?‎ ‎(一对一,多对一,允许B中有元素无原象。)‎ 注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。‎ 如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。‎ 函数的图象与直线交点的个数为 个。 ‎ ‎ 8. 函数的三要素是什么?如何比较两个函数是否相同?‎ ‎ (定义域、对应法则、值域)‎ 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)‎ ‎ 9. 求函数的定义域有哪些常见类型?‎ ‎ ‎ 函数定义域求法: ‎ l 分式中的分母不为零;‎ l 偶次方根下的数(或式)大于或等于零;‎ l 指数式的底数大于零且不等于一;‎ l 对数式的底数大于零且不等于一,真数大于零。‎ l 正切函数 ‎ l 余切函数 ‎ l 反三角函数的定义域 函数y=arcsinx的定义域是 [-1, 1]  ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是.,函数y=arcctgx的定义域是 R ,值域是 (0, π) .‎ 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。‎ ‎10. 如何求复合函数的定义域?‎ ‎ ‎ 义域是_____________。 ‎ 复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。‎ 例 若函数的定义域为,则的定义域为 。‎ 分析:由函数的定义域为可知:;所以中有。‎ 解:依题意知: ‎ ‎ 解之,得 ‎ ‎∴ 的定义域为 ‎11、函数值域的求法 ‎1、直接观察法 对于一些比较简单的函数,其值域可通过观察得到。‎ 例 求函数y=的值域 ‎2、配方法 配方法是求二次函数值域最基本的方法之一。‎ 例、求函数y=-2x+5,x[-1,2]的值域。‎ ‎3、判别式法 对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面 下面,我把这一类型的详细写出来,希望大家能够看懂 ‎4、反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。‎ 例 求函数y=值域。‎ ‎5、函数有界性法 直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。‎ 例 求函数y=,,的值域。‎ ‎6、函数单调性法 ‎ 通常和导数结合,是最近高考考的较多的一个内容 例求函数y=(2≤x≤10)的值域 ‎7、换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。‎ 例 求函数y=x+的值域。‎ ‎8 数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。‎ 例:已知点P(x.y)在圆x2+y2=1上,‎ ‎ ‎ 例求函数y=+的值域。‎ 解:原函数可化简得:y=∣x-2∣+∣x+8∣ ‎ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。‎ 由上图可知:当点P在线段AB上时,‎ y=∣x-2∣+∣x+8∣=∣AB∣=10‎ 当点P在线段AB的延长线或反向延长线上时,‎ y=∣x-2∣+∣x+8∣>∣AB∣=10‎ 故所求函数的值域为:[10,+∞)‎ 例求函数y=+ 的值域 解:原函数可变形为:y=+‎ ‎ ‎ 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,‎ 由图可知当点P为线段与x轴的交点时, y=∣AB∣==,‎ 故所求函数的值域为[,+∞)。‎ 例求函数y=-的值域 解:将函数变形为:y=-‎ 上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差。即:y=∣AP∣-∣BP∣‎ 由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P¹,则构成△ABP¹,根据三角形两边之差小于第三边,‎ 有 ∣∣AP¹∣-∣BP¹∣∣<∣AB∣== ‎ 即:-<y<‎ ‎(2)当点P恰好为直线AB与x轴的交点时,有 ∣∣AP∣-∣BP∣∣=∣AB∣= 。‎ 综上所述,可知函数的值域为:(-,-)。‎ 注:求两距离之和时,要将函数式变形,使A,B两点在x轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧。‎ ‎9 、不等式法 利用基本不等式a+b≥2,a+b+c≥3(a,b,c∈),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。‎ 例:‎ ‎ ‎ 倒数法 有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y=的值域 多种方法综合运用 总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。‎ ‎12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?‎ ‎ 切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 13. 反函数存在的条件是什么?‎ ‎ (一一对应函数)‎ ‎ 求反函数的步骤掌握了吗?‎ ‎ (①反解x;②互换x、y;③注明定义域)‎ ‎ ‎ ‎ ‎ 在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:‎ ‎(2004.全国理)函数的反函数是( B )‎ ‎ A.y=x2-2x+2(x<1) B.y=x2-2x+2(x≥1)‎ ‎ C.y=x2-2x (x<1) D.y=x2-2x (x≥1)‎ 当然,心情好的同学,可以自己慢慢的计算,我想, 一番心血之后,如果不出现计算问题的话,答案还是可以做出来的。可惜,这个不合我胃口,因为我一向懒散惯了,不习惯计算。下面请看一下我的思路:‎ 原函数定义域为 x〉=1,那反函数值域也为y>=1. 排除选项C,D.现在看值域。原函数至于为y>=1,则反函数定义域为x>=1, 答案为B.‎ 我题目已经做完了, 好像没有动笔(除非你拿来写*书)。思路能不能明白呢?‎ ‎14. 反函数的性质有哪些?‎ ‎ 反函数性质:‎ 1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x对应原函数中的y)‎ 2、 反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)‎ 3、 反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称 ‎ ①互为反函数的图象关于直线y=x对称;‎ ‎ ②保存了原来函数的单调性、奇函数性;‎ ‎ ‎ ‎ ‎ 由反函数的性质,可以快速的解出很多比较麻烦的题目,如 ‎(04. 上海春季高考)已知函数,则方程的解__________.1‎ 对于这一类题目,其实方法特别简单,呵呵。已知反函数的y,不就是原函数的x吗?那代进去阿,答案是不是已经出来了呢?(也可能是告诉你反函数的x值,那方法也一样,呵呵。 自己想想,不懂再问我 ‎ ‎ ‎15 . 如何用定义证明函数的单调性?‎ ‎ (取值、作差、判正负)‎ 判断函数单调性的方法有三种: (1)定义法:‎ 根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系 可以变形为求的正负号或者与1的关系 ‎(2)参照图象: ①若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性; (特例:奇函数) ②若函数f(x)的图象关于直线x=a对称,则函数f(x)在关于点(a,0)的对称区间里具有相反的单调性。(特例:偶函数) (3)利用单调函数的性质: ①函数f(x)与f(x)+c(c是常数)是同向变化的 ②函数f(x)与cf(x)(c是常数),当c>0时,它们是同向变化的;当c<0时,它们是反向变化的。 ③如果函数f1(x),f2(x)同向变化,则函数f1(x)+f2(x)和它们同向变化;(函数相加) ④如果正值函数f1(x),f2(x)同向变化,则函数f1(x)f2(x)和它们同向变化;如果负值函数f1(2)与f2(x)同向变化,则函数f1(x)f2(x)和它们反向变化;(函数相乘) ⑤函数f(x)与在f(x)的同号区间里反向变化。 ⑥若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向变化,则在[α,β]上复合函数y=F[φ(x)]是递增的;若函数u=φ(x),x[α,β]与函数y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向变化,则在[α,β]上复合函数y=F[φ(x)]是递减的。(同增异减) ‎ ‎⑦若函数y=f(x)是严格单调的,则其反函数x=f-1(y)也是严格单调的,而且,它们的增减性相同。‎ f(g)‎ g(x)‎ f[g(x)]‎ f(x)+g(x)‎ f(x)*g(x) 都是正数 增 增 增 增 增 增 减 减 ‎/‎ ‎/‎ 减 增 减 ‎/‎ ‎/‎ 减 减 增 减 减 ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎∴……)‎ ‎16. 如何利用导数判断函数的单调性?‎ ‎ ‎ ‎ ‎ 值是( )‎ ‎ A. 0 B. ‎1 ‎ C. 2 D. 3‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ∴a的最大值为3)‎ ‎17. 函数f(x)具有奇偶性的必要(非充分)条件是什么?‎ ‎ (f(x)定义域关于原点对称)‎ ‎ ‎ ‎ ‎ ‎ 注意如下结论:‎ ‎ (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 判断函数奇偶性的方法 一、 定义域法 一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函数.‎ ‎.‎ 二、 奇偶函数定义法 在给定函数的定义域关于原点对称的前提下,计算,然后根据函数的奇偶性的定义判断其奇偶性.‎ 三、 四、 复合函数奇偶性 f(g)‎ g(x)‎ f[g(x)]‎ f(x)+g(x)‎ f(x)*g(x)‎ 奇 奇 奇 奇 偶 奇 偶 偶 非奇非偶 奇 偶 奇 偶 非奇非偶 奇 偶 偶 偶 偶 偶 ‎18. 你熟悉周期函数的定义吗?‎ ‎ ‎ 函数,T是一个周期。)‎ ‎ ‎ 我们在做题的时候,经常会遇到这样的情况:告诉你f(x)+f(x+t)=0,我们要马上反应过来,这时说这个函数周期2t. 推导:,‎ 同时可能也会遇到这种样子:f(x)=f(‎2a-x),或者说f(a-x)=f(a+x).其实这都是说同样一个意思:函数f(x)关于直线对称, 对称轴可以由括号内的2个数字相加再除以2得到。‎ 比如,f(x)=f(‎2a-x),或者说f(a-x)=f(a+x)就都表示函数关于直线x=a对称。‎ ‎ ‎ ‎ 如:‎ ‎ 19. 你掌握常用的图象变换了吗?‎ ‎ 联想点(x,y),(-x,y)‎ ‎ 联想点(x,y),(x,-y)‎ ‎ 联想点(x,y),(-x,-y)‎ ‎ 联想点(x,y),(y,x)‎ ‎ 联想点(x,y),(‎2a-x,y)‎ ‎ 联想点(x,y),(‎2a-x,0)‎ ‎ ‎ ‎(这是书上的方法,虽然我从来不用, 但可能大家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么麻烦。你要判断函数y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,画出点的坐标。 看点和原点的关系,就可以很直观的看出函数平移的轨迹了。)‎ ‎ 注意如下“翻折”变换:‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎19. 你熟练掌握常用函数的图象和性质了吗?‎ ‎ (k为斜率,b为直线与y轴的交点)‎ ‎ ‎ 的双曲线。‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程 ‎②求闭区间[m,n]上的最值。‎ ‎ ‎ ‎ ③求区间定(动),对称轴动(定)的最值问题。‎ ‎ ④一元二次方程根的分布问题。‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ 由图象记性质! (注意底数的限定!)‎ ‎ ‎ ‎ 利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)‎ ‎20. 你在基本运算上常出现错误吗?‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎21. 如何解抽象函数问题?‎ ‎ (赋值法、结构变换法)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎(对于这种抽象函数的题目,其实简单得都可以直接用死记了 1、 代y=x,‎ 2、 令x=0或1来求出f(0)或f(1)‎ 3、 求奇偶性,令y=—x;求单调性:令x+y=x1 ‎ 几类常见的抽象函数 ‎ 1. 正比例函数型的抽象函数 ‎ f(x)=kx(k≠0)---------------f(x±y)=f(x)±f(y)‎ 2. 幂函数型的抽象函数 ‎ f(x)=xa----------------f(xy)= f(x)f(y);f()=‎ 1. 指数函数型的抽象函数 ‎ f(x)=ax------------------- f(x+y)=f(x)f(y);f(x-y)=‎ 2. 对数函数型的抽象函数 f(x)=logax(a>0且a≠1)-----f(x·y)=f(x)+f(y);f()= f(x)-f(y)‎ 3. 三角函数型的抽象函数 f(x)=tgx-------------------------- f(x+y)=‎ f(x)=cotx------------------------ f(x+y)=‎ 例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)= -2求f(x)在区间[-2,1]上的值域.‎ 分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.‎ 例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-‎2a-2)<3的解.‎ 分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.‎ 例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].‎ (1) 判断f(x)的奇偶性;‎ (2) 判断f(x)在[0,+∞]上的单调性,并给出证明;‎ (3) 若a≥0且f(a+1)≤,求a的取值范围.‎ 分析:(1)令y=-1;‎ ‎ (2)利用f(x1)=f(·x2)=f()f(x2);‎ ‎ (3)0≤a≤2.‎ 例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:‎ (1) f(0);‎ (2) 对任意值x,判断f(x)值的符号.‎ 分析:(1)令x= y=0;(2)令y=x≠0.‎ 例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.‎ 分析:先猜出f(x)=2x;再用数学归纳法证明.‎ 例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:‎ (1) f(1);‎ (2) 若f(x)+f(x-8)≤2,求x的取值范围.‎ 分析:(1)利用3=1×3;‎ ‎(2)利用函数的单调性和已知关系式.‎ 例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由.‎ 分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,‎ 进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]….‎ ‎ 例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件:‎ ① x1、x2是定义域中的数时,有f(x1-x2)=;‎ ② f(a)= -1(a>0,a是定义域中的一个数);‎ ③ 当0<x<‎2a时,f(x)<0.‎ ‎ 试问:‎ (1) f(x)的奇偶性如何?说明理由;‎ (2) 在(0,‎4a)上,f(x)的单调性如何?说明理由.‎ ‎ 分析:(1)利用f [-(x1-x2)]= -f [(x1-x2)],判定f(x)是奇函数;‎ (3) 先证明f(x)在(0,‎2a)上是增函数,再证明其在(‎2a,‎4a)上也是增函数.‎ ‎ 对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.‎ ‎ ‎ 例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),‎ (1) 求证:f(1)=f(-1)=0;‎ (2) 求证:f(x)为偶函数;‎ (3) 若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-)≤0.‎ 分析:函数模型为:f(x)=loga|x|(a>0)‎ (1) 先令x=y=1,再令x=y= -1;‎ (2) 令y= -1;‎ (3) 由f(x)为偶函数,则f(x)=f(|x|).‎ 例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:‎ (1) 当x>0时,0<f(x)<1;‎ (2) f(x)在x∈R上是减函数.‎ 分析:(1)先令x=y=0得f(0)=1,再令y=-x;‎ (3) 受指数函数单调性的启发:‎ 由f(x+y)=f(x)f(y)可得f(x-y)=,‎ 进而由x1<x2,有=f(x1-x2)>1.‎ 练习题:‎ ‎1.已知:f(x+y)=f(x)+f(y)对任意实数x、y都成立,则( A )‎ ‎(A)f(0)=0 (B)f(0)=1 ‎ ‎(C)f(0)=0或1 (D)以上都不对 ‎2. 若对任意实数x、y总有f(xy)=f(x)+f(y),则下列各式中错误的是( B )‎ ‎(A)f(1)=0 (B)f()= f(x) ‎ ‎(C)f()= f(x)-f(y) (D)f(xn)=nf(x)(n∈N)‎ ‎3.已知函数f(x)对一切实数x、y满足:f(0)≠0,f(x+y)=f(x)f(y),且当x<0时,f(x)>1,则当x>0时,f(x)的取值范围是( C )‎ ‎(A)(1,+∞) (B)(-∞,1)‎ ‎(C)(0,1) (D)(-1,+∞)‎ ‎4.函数f(x)定义域关于原点对称,且对定义域内不同的x1、x2都有 f(x1-x2)=,则f(x)为( A )‎ ‎(A)奇函数非偶函数 (B)偶函数非奇函数 ‎(C)既是奇函数又是偶函数 (D)非奇非偶函数 ‎5.已知不恒为零的函数f(x)对任意实数x、y满足f(x+y)+f(x-y)=2[f(x)+f(y)],则函数f(x)是( B )‎ ‎(A)奇函数非偶函数 (B)偶函数非奇函数 ‎(C)既是奇函数又是偶函数 (D)非奇非偶函数 ‎23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?‎ ‎ (和三角形的面积公式很相似, 可以比较记忆.要知道圆锥展开图面积的求法)‎ ‎ ‎
查看更多

相关文章

您可能关注的文档