2009年高考数学试题分类汇编圆锥曲线

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2009年高考数学试题分类汇编圆锥曲线

‎2009年高考数学试题分类汇编——圆锥曲线 一、选择题 ‎1.(2009全国卷Ⅰ理)设双曲线(a>0,b>0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( )‎ ‎(A) (B)2 (C) (D) ‎ ‎2.(2009浙江理)过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是 ( ) w.w.w.k.s.5.u.c.o.m ‎ A. B. C. D.‎ ‎3.(2009浙江文)已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点.若,则椭圆的离心率是( )w.w.w.k.s.5.u.c.o.m ‎ A. B. C. D. ‎ ‎4.(2009北京理)点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是 ( )‎ ‎ A.直线上的所有点都是“点”B.直线上仅有有限个点是“点”‎ ‎ C.直线上的所有点都不是“点”‎ ‎ D.直线上有无穷多个点(点不是所有的点)是“点”‎ ‎5.(2009山东卷理)设双曲线的一条渐近线与抛物线y=x+1 只有一个公共点,则双曲线的离心率为( ). ‎ A. B. ‎5 C. D.‎ ‎6(2009安徽卷理)下列曲线中离心率为的是 ‎ ‎(A) (B) (C) (D) ‎ ‎7.(2009江西卷理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为 ‎ A. B. C. D. w.w.w.k.s.5.u.c.o.m ‎ ‎8.(2009全国卷Ⅱ理)已知直线与抛物线相交于两点,为的焦点,若,则 ‎ A. B. C. D. ‎ ‎9.(2009全国卷Ⅱ理)已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率为w.w.w.k.s.5.u.c.o.‎ m A. B. C. D. ‎ ‎10.(2009宁夏海南卷理)双曲线-=1的焦点到渐近线的距离为 ‎(A) (B)2 (C) (D)1‎ ‎11.(2009宁夏海南卷理)设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_____________.‎ ‎12.(2009四川卷理)已知双曲线的左右焦点分别为,其一条渐近线方程为,点在该双曲线上,则=‎ A. B. C .0 D. 4 ‎ ‎13.(2009四川卷理)已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是 A.2 B‎.3 C. D. ‎ ‎14.(2009重庆卷理)直线与圆的位置关系为( )‎ A.相切 B.相交但直线不过圆心 C.直线过圆心 D.相离 ‎15.(2009重庆卷理)已知以为周期的函数,其中。若方程恰有5个实数解,则的取值范围为( ) ‎ A. B. C. D.‎ ‎16.(2009年上海卷理)过圆的圆心,作直线分别交x、y正半轴于点A、B,被圆分成四部分(如图),若这四部分图形面积满足则直线AB有( )‎ ‎(A) 0条 (B) 1条 (C) 2条 (D) 3条 二、填空题 ‎1.(2009四川卷理)若⊙与⊙相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 w ‎ ‎2.(2009天津卷理)若圆与圆(a>0)的公共弦的长为,则___________ 。‎ ‎3.(2009北京理)椭圆的焦点为,点在椭圆上,若,则_________;的小大为__________. ‎ ‎4.(2009广东卷理)巳知椭圆的中心在坐标原点,长轴在轴上,离心率为,且上一点到的两个焦点的距离之和为12,则椭圆的方程为 .‎ ‎5.(2009福建卷理)过抛物线的焦点F作倾斜角为的直线交抛物线于A、‎ ‎6.(2009辽宁卷理)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。‎ ‎7.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为_______‎ ‎8.(2009年上海卷理)已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且.若的面积为9,则=____________. ‎ 三、解答题 ‎1.(2009浙江理)(本题满分15分)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.(I)求椭圆的方程;‎ ‎ (II)设点在抛物线:上,在点处 的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.‎ ‎2.(2009江苏卷)(本小题满分16分) ‎ 在平面直角坐标系中,已知圆和 圆.‎ ‎(1)若直线过点,且被圆截得的弦长为,求直线的方程;‎ ‎(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。‎ ‎3.(2009广东卷理)(本小题满分14分)‎ 已知曲线与直线交于两点和,且.记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为.设点是上的任一点,且点与点和点均不重合.‎ ‎(1)若点是线段的中点,试求线段的中点的轨迹方程; ‎ ‎(2)若曲线与有公共点,试求的最小值.‎ ‎4.(2009安徽卷理)(本小题满分13分)w.w.w.k.s.5.u.c.o.m ‎ 点在椭圆上,直线与直线垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.‎ ‎(I)证明: 点是椭圆与直线的唯一交点; ‎ ‎(II)证明:构成等比数列.‎ ‎5.(2009全国卷Ⅱ理)(本小题满分12分)‎ ‎ 已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为 (I)求,的值;‎ ‎ (II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由。‎ ‎6.(2009福建卷理)(本小题满分13分)‎ 已知A,B 分别为曲线C: +=1(y0,a>0)与x轴的左、右两个交点,直线过点B,且与轴垂直,S为上异于点B的一点,连结AS交曲线C于点T.‎ ‎(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;‎ ‎(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。 ‎ ‎7.(2009辽宁卷理)(本小题满分12分)‎ 已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。‎ (1) 求椭圆C的方程; ‎ (2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。‎ ‎8.(2009宁夏海南卷理)(本小题满分12分)‎ ‎ 已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.‎ ‎(Ⅰ)求椭圆C的方程;‎ ‎(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,‎ ‎=λ,求点M的轨迹方程,并说明轨迹是什么曲线。 ‎ ‎9.(2009天津卷理)(本小题满分14分)‎ ‎ 以知椭圆的两个焦点分别为,过点的直线与椭圆相交与两点,且。‎ (1) 求椭圆的离心率; ‎ (2) 求直线AB的斜率; ‎ (3) 设点C与点A关于坐标原点对称,直线上有一点在的外接圆上,求的值 ‎
查看更多

相关文章

您可能关注的文档