2018版高考数学(理)(苏教版,江苏专用)大一轮教师文档讲义:第三章3-2第2课时导数与函数的极值、最值

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2018版高考数学(理)(苏教版,江苏专用)大一轮教师文档讲义:第三章3-2第2课时导数与函数的极值、最值

第2课时 导数与函数的极值、最值 题型一 用导数解决函数极值问题 命题点1 根据函数图象判断极值 例1 (1)(2016·淮安模拟)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是________.‎ ‎(2)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是________.‎ ‎①函数f(x)有极大值f(2)和极小值f(1);‎ ‎②函数f(x)有极大值f(-2)和极小值f(1);‎ ‎③函数f(x)有极大值f(2)和极小值f(-2);‎ ‎④函数f(x)有极大值f(-2)和极小值f(2).‎ 答案 (1)③ (2)④‎ 解析 (1)由f′(x)图象可知,x=0是函数f(x)的极大值点,x=2是f(x)的极小值点.‎ ‎(2)由题图可知,当x<-2时,f′(x)>0;‎ 当-22时,f′(x)>0.‎ 由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.‎ 命题点2 求函数的极值 例2 设a为实数,函数f(x)=-x3+3x+a.‎ ‎(1)求f(x)的极值;‎ ‎(2)是否存在实数a,使得方程f(x)=0恰好有两个实数根?若存在,求出实数a的值;若不存在,请说明理由.‎ 解 (1)令f′(x)=-3x2+3=0,‎ 得x1=-1,x2=1.‎ 又因为当x∈(-∞,-1)时,f′(x)<0;‎ 当x∈(-1,1)时,f′(x)>0;‎ 当x∈(1,+∞)时,f′(x)<0.‎ 所以f(x)的极小值为f(-1)=a-2,‎ f(x)的极大值为f(1)=a+2.‎ ‎(2)因为f(x)在(-∞,-1)上单调递减,‎ 且当x→-∞时,f(x)→+∞;‎ 又f(x)在(1,+∞)上单调递减,‎ 且当x→+∞时,f(x)→-∞;‎ 而a+2>a-2,即函数的极大值大于极小值,‎ 所以当极大值等于0时,有极小值小于0,‎ 此时曲线f(x)与x轴恰好有两个交点,‎ 即方程f(x)=0恰好有两个实数根,‎ 所以a+2=0,a=-2,如图1.当极小值等于0时,有极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a-2=0,a=2.如图2.‎ 综上,当a=2或a=-2时方程恰好有两个实数根.‎ 命题点3 已知极值求参数 例3 (1)若函数f(x)=在x=1处取极值,则a=________.‎ ‎(2)(2016·南京学情调研)已知函数f(x)=x3+x2-2ax+1,若函数f(x)在(1,2)上有极值,则实数a的取值范围为________.‎ 答案 (1)3 (2)(,4)‎ 解析 (1)∵f′(x)=()′‎ ‎==,‎ 又∵函数f(x)在x=1处取极值,‎ ‎∴f′(1)=0.‎ ‎∴1+2×1-a=0,‎ ‎∴a=3.验证知a=3符合题意.‎ ‎(2)方法一 令f′(x)=x2+2x-2a=0,‎ 得x1=-1-,x2=-1+,‎ 因为x1∉(1,2),因此则需10.‎ 当01时,f′(x)>0,‎ ‎∴x=0,1,-1都是f(x)的极值点.‎ ‎(2)y′=2+,令y′=0,得x=-1.‎ 当x>0或x<-1时,y′>0;当-10,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.‎ ‎②若00,函数f(x)在区间(a,e]上单调递增,‎ 所以当x=a时,函数f(x)取得最小值ln a.‎ ‎③若a≥e,则当x∈(0,e]时,f′(x)≤0,函数f(x)在区间(0,e]上单调递减,‎ 所以当x=e时,函数f(x)取得最小值.‎ 综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;‎ 当0a,则实数a的取值范围是________________.‎ 答案 (-∞,)‎ 解析 由题意知,f′(x)=3x2-x-2,‎ 令f′(x)=0,得3x2-x-2=0,‎ 解得x=1或x=-,‎ 又f(1)=,f(-)=,‎ f(-1)=,f(2)=7,‎ 故f(x)min=,∴a<.‎ 题型三 函数极值和最值的综合问题 例5 已知函数f(x)= ‎(1)求f(x)在区间(-∞,1)上的极小值和极大值点;‎ ‎(2)求f(x)在[-1,e](e为自然对数的底数)上的最大值.‎ 解 (1)当x<1时,f′(x)=-3x2+2x=-x(3x-2),‎ 令f′(x)=0,解得x=0或x=.‎ 当x变化时,f′(x),f(x)的变化情况如下表:‎ x ‎(-∞,0)‎ ‎0‎ ‎(0,)‎ ‎(,1)‎ f′(x)‎ ‎-‎ ‎0‎ ‎+‎ ‎0‎ ‎-‎ f(x)‎ ‎↘‎ 极小值 ↗‎ 极大值 ↘‎ 故当x=0时,函数f(x)取得极小值f(0)=0,函数f(x)的极大值点为x=.‎ ‎(2)①当-1≤x<1时,由(1)知,函数f(x)在[-1,0)和[,1)上单调递减,在[0,]上单调递增.‎ 因为f(-1)=2,f()=,f(0)=0,‎ 所以f(x)在[-1,1)上的最大值为2.‎ ‎②当1≤x≤e时,f(x)=aln x,‎ 当a≤0时,f(x)≤0;‎ 当a>0时,f(x)在[1,e]上单调递增,‎ 则f(x)在[1,e]上的最大值为f(e)=a.‎ 故当a≥2时,f(x)在[-1,e]上的最大值为a;‎ 当a<2时,f(x)在[-1,e]上的最大值为2.‎ 思维升华 求一个函数在闭区间上的最值和在无穷区间(或开区间)上的最值时,方法是不同的.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.‎ ‎ 若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是________.‎ 答案 [-3,0)‎ 解析 由题意,得f′(x)=x2+2x=x(x+2),‎ 故f(x)在(-∞,-2),(0,+∞)上是增函数,‎ 在(-2,0)上是减函数,作出其图象如图所示,‎ 令x3+x2-=-,得x=0或x=-3,‎ 则结合图象可知,解得a∈[-3,0).‎ ‎3.利用导数求函数的最值 典例 (16分)已知函数f(x)=ln x-ax(a∈R).‎ ‎(1)求函数f(x)的单调区间;‎ ‎(2)当a>0时,求函数f(x)在[1,2]上的最小值.‎ 思维点拨 (1)已知函数解析式求单调区间,实质上是求f′(x)>0,f′(x)<0的解区间,并注意定义域.(2)先研究f(x)在[1,2]上的单调性,再确定最值是端点值还是极值.(3)两小问中,由于解析式中含有参数a,要对参数a进行分类讨论.‎ 规范解答 ‎ 解 (1)f′(x)=-a(x>0),‎ ‎①当a≤0时,f′(x)=-a>0,即函数f(x)的单调递增区间为(0,+∞). [2分]‎ ‎②当a>0时,令f′(x)=-a=0,可得x=,‎ 当00;‎ 当x>时,f′(x)=<0,‎ 故函数f(x)的单调递增区间为,‎ 单调递减区间为. [6分]‎ 综上可知,当a≤0时,函数f(x)的单调递增区间为(0,+∞);‎ 当a>0时,函数f(x)的单调递增区间为,单调递减区间为. [7分]‎ ‎(2)①当≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,所以f(x)的最小值是f(2)=ln 2-2a. [9分]‎ ‎②当≥2,即00,则f(x)单调递增;‎ 当x∈(-2,2)时,f′(x)<0,则f(x)单调递减,‎ ‎∴f(x)的极小值点为a=2.‎ ‎3.若函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为________.‎ 答案 -71‎ 解析 f′(x)=3x2-6x-9=3(x-3)(x+1).‎ 由f′(x)=0,得x=3或x=-1.‎ 又f(-4)=k-76,f(3)=k-27,‎ f(-1)=k+5,f(4)=k-20.‎ 由f(x)max=k+5=10,得k=5,‎ ‎∴f(x)min=k-76=-71.‎ ‎4.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是________________.‎ 答案 (-∞,-3)∪(6,+∞)‎ 解析 ∵f′(x)=3x2+2ax+(a+6),‎ 由已知可得f′(x)=0有两个不相等的实根.‎ ‎∴Δ=4a2-4×3(a+6)>0,即a2-3a-18>0.‎ ‎∴a>6或a<-3.‎ ‎*5.(2016·扬州模拟)函数f(x)=ax3+bx2+cx-34(a,b,c∈R)的导函数为f′(x),若不等式f′(x)≤0的解集为{x|-2≤x≤3},f(x)的极小值等于-115,则a的值是________.‎ 答案 2‎ 解析 由已知可得f′(x)=3ax2+2bx+c,‎ 由3ax2+2bx+c≤0的解集为{x|-2≤x≤3}可知a>0,‎ 且-2,3是方程3ax2+2bx+c=0的两根,‎ 则由根与系数的关系知=-1,=-6,‎ ‎∴b=-,c=-18a,‎ 此时f(x)=ax3-x2-18ax-34,‎ 当x∈(-∞,-2)时,f′(x)>0,f(x)为增函数;‎ 当x∈(-2,3)时,f′(x)<0,f(x)为减函数;‎ 当x∈(3,+∞)时,f′(x)>0,f(x)为增函数,‎ ‎∴f(3)为f(x)的极小值,且f(3)=27a--54a-34=-115,解得a=2.‎ ‎6.(2016·南京模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a=________.‎ 答案 1‎ 解析 由题意知,当x∈(0,2)时,f(x)的最大值为-1.‎ 令f′(x)=-a=0,得x=,‎ 当00;‎ 当x>时,f′(x)<0.‎ ‎∴f(x)max=f()=-ln a-1=-1,‎ 解得a=1.‎ ‎7.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)=________.‎ 答案 18‎ 解析 ∵函数f(x)=x3+ax2+bx+a2在x=1处有极值10,f′(x)=3x2+2ax+b,‎ ‎∴f(1)=10,且f′(1)=0,‎ 即解得或 而当时,函数在x=1处无极值,故舍去.‎ ‎∴f(x)=x3+4x2-11x+16,∴f(2)=18.‎ ‎8.函数f(x)=x3-3a2x+a(a>0)的极大值是正数,极小值是负数,则a的取值范围是________.‎ 答案 (,+∞)‎ 解析 f′(x)=3x2-3a2=3(x+a)(x-a),‎ 由f′(x)=0得x=±a,‎ 当-aa或x<-a时,f′(x)>0,函数递增.‎ ‎∴f(-a)=-a3+3a3+a>0且f(a)=a3-3a3+a<0,‎ 解得a>.‎ ‎∴a的取值范围是(,+∞).‎ ‎9.(2016·徐州模拟)已知函数f(x)=x3-x2-x+m在[0,1]上的最小值为,则实数m的值为________.‎ 答案 2‎ 解析 由f(x)=x3-x2-x+m,‎ 可得f′(x)=x2-2x-1,‎ 令x2-2x-1=0,可得x=1±.‎ 当x∈(1-,1+)时,f′(x)<0,‎ 即函数f(x)在(1-,1+)上是减函数,‎ 即f(x)在[0,1]上的最小值为f(1),‎ 所以-1-1+m=,解得m=2.‎ ‎10.(2016·南京模拟)已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m∈[-1,1],则f(m)的最小值为________.‎ 答案 -4‎ 解析 f′(x)=-3x2+2ax,由f(x)在x=2处取得极值知f′(2)=0.‎ 即-3×4+2a×2=0,故a=3.‎ 由此可得f(x)=-x3+3x2-4.‎ f′(x)=-3x2+6x,由此可得f(x)在(-1,0)上单调递减,在(0,1)上单调递增,‎ ‎∴对m∈[-1,1]时,f(m)min=f(0)=-4.‎ ‎11.已知函数f(x)=xln x.若对于任意x∈[,e],不等式2f(x)≤-x2+ax-3恒成立,则实数a的取值范围为__________________.‎ 答案 [-2++3e,+∞)‎ 解析 由题意知,2xln x≤-x2+ax-3,则a≥2ln x+x+.设h(x)=2ln x+x+(x>0),则h′(x)=+1-=.当x∈[,1)时,h′(x)<0,h(x)单调递减;当x∈(1,e]时,h′(x)>0,h(x)单调递增.由h()=-2++3e,h(e)=2+e+,h()-h(e)=2e--4>0,可得h()>h(e).所以当x∈[,e]时,h(x)的最大值为h()=-2++3e.故a≥-2++3e.‎ ‎12.设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).‎ ‎(1)确定a的值;‎ ‎(2)求函数f(x)的单调区间与极值.‎ 解 (1)因为f(x)=a(x-5)2+6ln x,‎ 所以f′(x)=2a(x-5)+.‎ 令x=1,得f(1)=16a,f′(1)=6-8a,‎ 所以曲线y=f(x)在点(1,f(1))处的切线方程为 y-16a=(6-8a)(x-1),‎ 由点(0,6)在切线上,可得6-16a=8a-6,故a=.‎ ‎(2)由(1)知,f(x)=(x-5)2+6ln x(x>0),‎ f′(x)=x-5+=.‎ 令f′(x)=0,解得x=2或3.‎ 当03时,f′(x)>0,‎ 故f(x)在(0,2),(3,+∞)上为增函数;‎ 当20,b∈R).‎ ‎(1)设a=1,b=-1,求f(x)的单调区间;‎ ‎(2)若对任意的x>0,f(x)≥f(1),试比较ln a与-2b的大小.‎ 解 (1)由f(x)=ax2+bx-ln x,x∈(0,+∞),‎ 得f′(x)=.‎ ‎∵a=1,b=-1,‎ ‎∴f′(x)==(x>0).‎ 令f′(x)=0,得x=1.‎ 当01时,f′(x)>0,f(x)单调递增.‎ ‎∴f(x)的单调递减区间是(0,1);‎ 单调递增区间是(1,+∞).‎ ‎(2)由题意可知,f(x)在x=1处取得最小值,‎ 即x=1是f(x)的极值点,‎ ‎∴f′(1)=0,∴2a+b=1,即b=1-2a.‎ 令g(x)=2-4x+ln x(x>0),‎ 则g′(x)=.‎ 令g′(x)=0,得x=.‎ 当00,g(x)单调递增,‎ 当x>时,g′(x)<0,g(x)单调递减,‎ ‎∴g(x)≤g()=1+ln ‎=1-ln 4<0,‎ ‎∴g(a)<0,即2-4a+ln a=2b+ln a<0,‎ 故ln a<-2b.‎
查看更多

相关文章

您可能关注的文档