- 2021-05-13 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018版高考文科数学(北师大版)一轮文档讲义:章10-4随机事件的概率
第4讲 随机事件的概率 最新考纲 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式. 知 识 梳 理 1.频率与概率 (1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率. (2)在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时我们把这个常数叫作随机事件A的概率,记作P(A). 2.事件的关系与运算 定义 符号表示 包含关系 如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A B⊇A(或A⊆B) 包含于事件B) 相等关系 若B⊇A且A⊇B A=B 和事件(并事件) 若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件) A+B(或A∪B) 交事件(积事件) 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件) A∩B(或AB) 互斥事件 若A∩B为不可能事件,则称事件A与事件B互斥 A∩B=∅ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 A∩B=∅ P(A+B)=1 3.概率的几个基本性质 (1)概率的取值范围:0≤P(A)≤1. (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)互斥事件概率的加法公式 ①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B). ②若事件B与事件A互为对立事件,则P(A)=1-P(B). 诊 断 自 测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)事件发生的频率与概率是相同的.( ) (2)在大量的重复实验中,概率是频率的稳定值.( ) (3)若随机事件A发生的概率为P(A),则0≤P(A)≤1.( ) (4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( ) 答案 (1)× (2)√ (3)√ (4)× 2.袋中装有3个白球,4个黑球,从中任取3个球,则:①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为( ) A.① B.② C.③ D.④ 解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件. 答案 B 3.(2016·天津卷)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( ) A. B. C. D. 解析 设“两人下成和棋”为事件A,“甲获胜”为事件B.事件A与B是互斥事件,所以甲不输的概率P=P(A+B)=P(A)+P(B)=+=. 答案 A 4.(2017·威海模拟) 围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是________. 解析 由题意知,所求概率P=+=. 答案 5.(2017·长沙模拟)有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5),2;[15.5,19.5),4;[19.5,23.5),9;[23.5,27.5),18;[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5],3. 根据样本的频率分布估计,数据落在[27.5,43.5]内的概率约是________. 解析 由条件可知,落在[27.5,43.5]的数据有11+12+7+3=33(个),故所求概率约为=. 答案 考点一 随机事件间的关系 【例1】 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( ) A.① B.②④ C.③ D.①③ 解析 从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数. 其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件. 又①②④中的事件可以同时发生,不是对立事件. 答案 C 规律方法 (1)本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系. (2)准确把握互斥事件与对立事件的概念. ①互斥事件是不可能同时发生的事件,但可以同时不发生. ②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. 【训练1】 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________. ①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C+E)=1;⑤P(B)=P(C). 解析 当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C+E不一定为必然事件,P(C∪E)≤1,④不正确.由于P(B)=,P(C)=,所以⑤不正确. 答案 ① 考点二 随机事件的频率与概率 【例2】 (2016·全国Ⅱ卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 0 1 2 3 4 ≥5 保费 0.85a a 1.25a 1.5a 1.75a 2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 0 1 2 3 4 ≥5 频数 60 50 30 30 20 10 (1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值; (2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值; (3)求续保人本年度平均保费的估计值. 解 (1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55. (2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的频率为=0.3, 故P(B)的估计值为0.3. (3)由所给数据得 保费 0.85a a 1.25a 1.5a 1.75a 2a 频率 0.30 0.25 0.15 0.15 0.10 0.05 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a. 因此,续保人本年度平均保费的估计值为1.192 5a. 规律方法 (1)解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率. (2)频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值. 【训练2】 (2015·北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买. 商品 顾客人数 甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98 × √ × × (1)估计顾客同时购买乙和丙的概率; (2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率; (3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为=0.2. (2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品. 所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3. (3)与(1)同理,可得: 顾客同时购买甲和乙的概率可以估计为=0.2, 顾客同时购买甲和丙的概率可以估计为=0.6,顾客同时购买甲和丁的概率可以估计为=0.1. 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 考点三 互斥事件与对立事件的概率 【例3】 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上 顾客数/人 x 30 25 y 10 结算时间/(分钟/人) 1 1.5 2 2.5 3 已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x,y的值,并估计顾客一次购物的结算时间的平均值; (2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率). 解 (1)由已知得25+y+10=55,x+30=45, 所以x=15,y=20. 该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 =1.9(分钟). (2)记A表示事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”、“该顾客一次购物的结算时间为1.5分钟”、“该顾客一次购物的结算时间为2分钟”.将频率视为概率得 P(A1)==,P(A2)==,P(A3)==. 因为A=A1+A2+A3,且A1,A2,A3是互斥事件, 所以P(A)=P(A1+A2+A3)=P(A1)+P(A2)+P(A3) =++=. 故一位顾客一次购物的结算时间不超过2分钟的概率为. 规律方法 (1)①求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来. ②结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误. (2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法. 【训练3】 某商场有奖销售活动中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求: (1)P(A),P(B),P(C); (2)1张奖券的中奖概率; (3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P(A)=,P(B)==, P(C)==. 故事件A,B,C的概率分别为,,. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A+B+C. ∵A,B,C两两互斥, ∴P(M)=P(A+B+C)=P(A)+P(B)+P(C) ==. 故1张奖券的中奖概率为. (3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件, ∴P(N)=1-P(A+B)=1-=. 故1张奖券不中特等奖且不中一等奖的概率为. [思想方法] 1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A). 2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生. 3.求复杂的互斥事件的概率一般有两种方法: (1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算. (2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反). [易错防范] 1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数. 2.正确认识互斥事件与对立事件的关系,对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件. 3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义. 基础巩固题组 (建议用时:40分钟) 一、选择题 1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,任意两人不能同一个方向.事件“甲向南”与事件“乙向南”是( ) A.互斥但非对立事件 B.对立事件 C.相互独立事件 D.以上都不对 解析 由于任意两人不能同一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件. 答案 A 2.(2017·合肥模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为( ) A.0.7 B.0.65 C.0.35 D.0.3 解析 事件“抽到的产品不是一等品”与事件A是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35. 答案 C 3.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率为的事件是( ) A.至多有一张移动卡 B.恰有一张移动卡 C.都不是移动卡 D.至少有一张移动卡 解析 至多有一张移动卡包含“一张移动卡,一张联通卡”、“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,因此“至多有一张移动卡”的概率为. 答案 A 4.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是( ) A. B. C. D. 解析 设a,b分别为甲、乙摸出球的编号.由题意,摸球试验共有36种不同结果,满足a=b的基本事件共有6种.所以摸出编号不同的概率P=1-=. 答案 C 5.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,则一次试验中,事件A+发生的概率为( ) A. B. C. D. 解析 掷一个骰子的试验有6种可能结果. 依题意P(A)==,P(B)==, ∴P()=1-P(B)=1-=, ∵表示“出现5点或6点”的事件, 因此事件A与互斥, 从而P(A+)=P(A)+P()=+=. 答案 C 二、填空题 6.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率. 解析 ①错,不一定是10件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念. 答案 0 7.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________. 解析 20组随机数中,恰有两次命中的有5组,因此该运动员三次投篮恰有两次命中的概率为P==. 答案 8.某城市2017年的空气质量状况如表所示: 污染指数T 30 60 100 110 130 140 概率P 其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良,100<T≤150时,空气质量为轻微污染,则该城市2017年空气质量达到良或优的概率为________. 解析 由题意可知2017年空气质量达到良或优的概率为P=++=. 答案 三、解答题 9.某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下: 获奖人数 0 1 2 3 4 5 概率 0.1 0.16 x y 0.2 z (1)若获奖人数不超过2人的概率为0.56,求x的值; (2)若获奖人数最多4人的概率为0.96,最少3人的概率为0.44,求y,z的值. 解 记事件“在竞赛中,有k人获奖”为Ak(k∈N,k≤5),则事件Ak彼此互斥. (1)∵获奖人数不超过2人的概率为0.56, ∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56. 解得x=0.3. (2)由获奖人数最多4人的概率为0.96,得P(A5)=1-0.96=0.04,即z=0.04. 由获奖人数最少3人的概率为0.44,得P(A3)+P(A4)+P(A5)=0.44,即y+0.2+0.04=0.44. 解得y=0.2. 10.(2015·陕西卷)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下: 日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴 日期 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 天气 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨 (1)在4月份任取一天,估计西安市在该天不下雨的概率; (2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率. 解 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为P==. (2)称相邻的两个日期为“互邻日期对” (如,1日与2日,2日与3日等),这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f==. 以频率估计概率,运动会期间不下雨的概率为. 能力提升题组 (建议用时:20分钟) 11.设事件A,B,已知P(A)=,P(B)=,P(A+B)=,则A,B之间的关系一定为( ) A.两个任意事件 B.互斥事件 C.非互斥事件 D.对立事件 解析 因为P(A)+P(B)=+==P(A+B),所以A,B之间的关系一定为互斥事件. 答案 B 12.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( ) A. B. C. D. 解析 设被污损的数字为x,则 甲=(88+89+90+91+92)=90, 乙=(83+83+87+99+90+x), 若甲=乙,则x=8. 若甲>乙,则x可以为0,1,2,3,4,5,6,7, 故P==. 答案 C 13.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(A+B)=________. 解析 将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”. 则C,D互斥, 且P(C)=,P(D)=, ∴P(A+B)=P(C+D)=P(C)+P(D)=. 答案 14.(2017·宝鸡调研)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下: 赔付金额(元) 0 1 000 2 000 3 000 4 000 车辆数(辆) 500 130 100 150 120 (1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率; (2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率. 解 (1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得 P(A)==0.15,P(B)==0.12. 由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27. (2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24. 特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.查看更多