高考极坐标与参数方程常见题型

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考极坐标与参数方程常见题型

极坐标与参数方程 一、基础知识点梳理 ‎(一)极坐标 极坐标系的概念 ‎(1)极坐标系 如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.‎ 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.‎ ‎(2)极坐标 设M是平面内一点,极点与点M的距离|OM|叫做点M的极径,记为;以极轴为始边,射线为终边的角叫做点M的极角,记为.有序数对叫做点M的极坐标,记作.‎ 一般地,不作特殊说明时,我们认为可取任意实数.‎ 特别地,当点在极点时,它的极坐标为(0, )(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.‎ 如果规定,那么除极点外,平面内的点可用唯一的极坐标表示;同时,极坐标表示的点也是唯一确定的.‎ ‎3、极坐标和直角坐标的互化 ‎(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:‎ ‎(2)互化公式:设是坐标平面内任意一点,它的直角坐标是,极坐标是(),于是极坐标与直角坐标的互化公式如表:‎ 点 直角坐标 极坐标 互化公式 在一般情况下,由确定角时,可根据点所在的象限最小正角.‎ ‎4、常见曲线的极坐标方程 曲线 图形 极坐标方程 圆心在极点,半径为的圆 圆心为,半径为的圆 圆心为,半径为的圆 过极点,倾斜角为的直线 ‎(1)‎ ‎(2)‎ 过点,与极轴垂直的直线 过点,与极轴平行的直线 ‎(二)、参数方程 ‎1、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数①,并且对于的每一个允许值,由方程组①所确定的点都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.‎ ‎2、参数方程和普通方程的互化 ‎(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.‎ ‎(2)如果知道变数中的一个与参数的关系,例如,把它代入普通方程,求出另一个变数与参数的关系,那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使的取值范围保持一致.‎ 注:普通方程化为参数方程,参数方程的形式不一定唯一。应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。‎ ‎3、圆的参数 圆心为,半径为的圆的普通方程是,‎ 它的参数方程为:。‎ ‎4、椭圆的参数方程 以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。‎ ‎5、双曲线的参数方程 以坐标原点为中心,焦点在轴上的双曲线的标准议程为其参数方程为,其中 焦点在轴上的双曲线的标准方程是其参数方程为 ‎ 二、极坐标与参数方程历年高考题:‎ ‎1、 在以O为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a相交于A,B两点.若△AOB是等边三角形,则a的值为________.‎ ‎2、 以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程是(t为参数),圆C的极坐标方程是ρ=4cos θ,则直线l被圆C截得的弦长为(  )‎ A. B.2 C. D.2 ‎3、曲线(θ为参数)的对称中心(  )‎ A.在直线y=2x上 B.在直线y=-2x上 C.在直线y=x-1上 D.在直线y=x+1上 ‎4、在极坐标系中,点到直线ρsin=1的距离是________.‎ ‎5、在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为________.‎ ‎6、已知曲线C1的参数方程是(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为________.‎ ‎7、在平面直角坐标系中,倾斜角为的直线l与曲线C:(α为参数)交于A,B两点,且|AB|=2.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是________.‎ ‎ ‎ ‎8、已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=________.‎ ‎9、在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cos θ,θ∈.‎ ‎(1)求C的参数方程;‎ ‎(2)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.‎ ‎ 10、已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).‎ ‎(1)求直线l和圆C的普通方程;‎ ‎(2)若直线l与圆C有公共点,求实数a的取值范围.‎ ‎11、已知直线的参数方程为,(t为参数),圆的参数方程为,(θ为常数).‎ ‎①求直线和圆的普通方程;‎ ‎②若直线与圆有公共点,求实数的取值范围.‎ ‎12、将圆上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.‎ ‎⑴写出C的参数方程;‎ ‎⑵设直线l:2x+y-2=0与C的交点为以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.‎ ‎13、已知曲线C:+=1,直线l:(t为参数).‎ ‎(1)写出曲线C的参数方程,直线l的普通方程;‎ ‎(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.‎ ‎14、‎
查看更多

相关文章

您可能关注的文档