- 2021-05-13 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
三维设计广东文人教版2014高考数学第一轮复习考案 空间几何体的结构 文
第八章 立体几何 第49课 空间几何体的结构 1.下列说法错误的是( ) A.若棱柱的底面边长相等,则它的各个侧面的面积相等 B.四棱柱有条侧棱,个侧面,侧面为平行四边形 C.多面体至少有四个面 D.棱台的侧棱延长后必交于一个点 【答案】A 2.下列结论正确的是( ) A.各个面都是三角形的几何体是三棱锥 B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线 【答案】D 【解析】A错误.如由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不一定是棱锥. B错误.若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥. C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长. 3.(2019安徽高考)若四面体的三组对棱分别相等,即,,,则______(写出所有正确结论编号). ①四面体每组对棱相互垂直 ②四面体每个面的面积相等 ③从四面体每个顶点出发的三条棱两两夹角之和大于而小于 ④连接四面体每组对棱中点的线段互垂直平分 ⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长 【答案】②④⑤ 【解析】②四面体每个面是全等三角形,面积相等; ③从四面体每个顶点出发的三条棱两两夹角之和等于; ④连接四面体每组对棱中点构成菱形,线段互垂直平分; ⑤从四面体每个顶点出发的三条棱的长可作为一个三角形的三边长. 4.如图,在底面为正方形的长方体上任意选择个顶点,它们可能是如下各种几何形体的个顶点,这些几何形体是 (写出所有正确结论的编号). ①矩形. ②不是矩形的平行四边形. ③有三个面为直角三角形,有一个面为等腰三角形的四面体. ④每个面都是等腰三角形的四面体. ⑤每个面都是直角三角形的四面体. 【答案】①③④⑤ 【解析】①对,图中,四边形为矩形. ③对,图中,四面体符合条件. ④对,图中,四面体符合条件. ⑤对,图中,四面体符合条件. 5.如图,长方体中,,,从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,求其最短路程 【解析】从对角线的一端沿侧面到点有三种到达方式: ①经侧棱到达,则最短距离为图中的线段, ②经侧棱到达,则最短距离为图中的线段, ③经侧棱到达,则最短距离为图中的线段, 综上可知,其最短距离是. 6.三棱台上底面边长为,下底面边长为,高为,求这个正三棱台的斜高与侧棱长. 【解析】如图,,,, ∵ 底面,是正三角形, 在直角梯形中,斜高为 在直角梯形中,侧棱为, ∴ 正三棱台的斜高与侧棱长分别为、. 查看更多