高考文科数学集合专题讲解及高考真题精选含答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考文科数学集合专题讲解及高考真题精选含答案

集合、简易逻辑 ‎(1)集合的概念 ‎ 集合中的元素具有确定性、互异性和无序性.‎ ‎(2)常用数集及其记法 表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.‎ ‎(3)集合与元素间的关系 对象与集合的关系是,或者,两者必居其一.‎ ‎(4)集合的表示法 ‎ ①自然语言法:用文字叙述的形式来描述集合.‎ ‎②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.‎ ‎③描述法:{|具有的性质},其中为集合的代表元素.‎ ‎④图示法:用数轴或韦恩图来表示集合.‎ ‎(5)集合的分类 ‎①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().‎ ‎【1.1.2】集合间的基本关系 ‎(6)子集、真子集、集合相等 名称 记号 意义 性质 示意图 子集 ‎(或 A中的任一元素都属于B ‎(1)AA ‎(2)‎ ‎(3)若且,则 ‎(4)若且,则 或 真子集 AB ‎(或BA)‎ ‎,且B中至少有一元素不属于A ‎(1)(A为非空子集)‎ ‎(2)若且,则 集合 相等 A中的任一元素都属于B,B中的任一元素都属于A ‎(1)AB ‎(2)BA ‎(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.‎ 集合的基本运算 1. 集合运算:交、并、补.‎ 2. 主要性质和运算律 (1) 包含关系:‎ (1) 等价关系:‎ (2) 集合的运算律:‎ 交换律: ‎ 结合律: ‎ 分配律:.‎ ‎0-1律:‎ 等幂律:‎ 求补律:A∩CUA=φ A∪CUA=U ðCUU=φ ðCUφ=U ‎ 反演律:CU(A∩B)= (CUA)∪(CUB) CU(A∪B)= (CUA)∩(CUB)‎ 简易逻辑 ‎1、命题的定义:可以判断真假的语句叫做命题。‎ ‎2、逻辑联结词、简单命题与复合命题:‎ ‎“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。‎ 构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” ) 。‎ ‎3、“或”、 “且”、 “非”的真值判断 ‎(1)“非p”形式复合命题的真假与F的真假相反;‎ ‎(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;‎ ‎(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.‎ ‎4、四种命题的形式:‎ 原命题:若P则q; 逆命题:若q则p;‎ 否命题:若┑P则┑q;逆否命题:若┑q则┑p。‎ ‎(1)交换原命题的条件和结论,所得的命题是逆命题;‎ ‎ (2)同时否定原命题的条件和结论,所得的命题是否命题;‎ ‎ (3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.‎ ‎5、四种命题之间的相互关系:‎ 一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)‎ ‎①、原命题为真,它的逆命题不一定为真。‎ ‎②、原命题为真,它的否命题不一定为真。‎ ‎③、原命题为真,它的逆否命题一定为真。‎ ‎6、如果已知pq那么我们说,p是q的充分条件,q是p的必要条件。‎ 若pq且qp,则称p是q的充要条件,记为p⇔q.‎ ‎09-13高考真题 ‎09.3.“sin=”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 ‎【答案】A ‎09.13. 设集合A=(x∣log2x<1), B=(X∣<1), 则A= .‎ ‎【答案】‎ ‎【解析】易得A= B= ∴A∩B=.‎ ‎10.1设集合M={1,2,4,8},N={x|x是2的倍数},则M∩N=C A. ‎{2,4} B.{1,2,4} C.{2,4,8} D{1,2,8}‎ ‎10.10.记实数…中的最大数为{…},最小数为min{…}.已知的三边边长为、、(),定义它的倾斜度为则“t=1”是“为等边三解形”的B A,充分布不必要的条件 B.必要而不充分的条件 C.充要条件 D.既不充分也不必要的条件 ‎11.1.已经,,,则CU A. B. C. D.‎ ‎【详细解析】 先求出={1,2,3,4,5,7},再求 CU ‎【考点定位】 考查集合的并集,补集的运算,属于简单题.‎ ‎11.10.若实数,满足,,且,则称a与b互补.记,那么是与互补的 A.必要而不充分的条件 B.充分而不必要的条件 C.充要条件 D.既不充分也不必要的条件 ‎【详细解析】 若(a,b)= ,则=(a+b)‎ ‎ 两边平方解得ab=0,故a,b至少有一为0,不妨令a=0则可得|b|-b=0,故b≥0,即a与b互补,而当a与b互补时,易得ab=0,此时=0,即(a,b)=0,故(a,b)=0是a与b互补的充要条件.‎ ‎【考点定位】 本题考查的知识点是必要条件、充分条件与充要条件的,其中判断φ(a,b)=0⇒a与b互补与a与b互补⇒φ(a,b)=0的真假,是解答本题的关键.属于中档题 ‎12.1.已知集合,则满足条件的集合的个数为( D )‎ A.1 B.2 C.3 D.4‎ ‎12.9.设,则是的( A )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ‎13.1.已知全集,集合,,则 A. B. C. D.‎ ‎1.B ‎ ‎13.3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.∨ B.∨ C.∧ D.∨‎ A 因为p是“甲降落在指定范围”,q是“乙降落在指定范围”,则是“没有降落在指定范围”,是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为∨ .‎
查看更多

相关文章

您可能关注的文档