福建省高考数学试题及答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

福建省高考数学试题及答案

‎2006年高考文科数学试题(福建卷)‎ 一.选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎(1)已知两条直线和互相垂直,则等于 ‎ (A)2    (B)1    (C)0    (D)‎ ‎(2)在等差数列中,已知则等于 ‎ (A)40    (B)42    (C)43    (D)45‎ ‎(3)是的 ‎ (A)充分而不必要条件    (B)必要不而充分条件 ‎ (C)充要条件        (D)既不充分也不必要条件 ‎(4)已知则等于 ‎ (A)    (B)    (C)    (D)‎ ‎(5)已知全集且则等于 ‎ (A)    (B)    (C)    (D)‎ ‎(6)函数的反函数是 ‎ (A)方       (B)‎ ‎ (C)        (D)‎ ‎(7)已知正方体外接球的体积是,那么正方体的棱长等于 ‎ (A)    (B)    (C)    (D)‎ ‎(9)已知向量与的夹角为,则等于 ‎ (A)5    (B)4    (C)3    (D)1‎ ‎(10)对于平面和共面的直线、下列命题中真命题是 ‎ (A)若则    (B)若则 ‎ (C)若则    (D)若、与所成的角相等,则 ‎(11)已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 ‎ (A)    (B)    (C)    (D)‎ ‎(12)已知是周期为2的奇函数,当时,设 则 ‎ (A)   (B)   (C)   (D)‎ 二.填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。‎ ‎(14)已知直线与抛物线相切,则 ‎(15)已知实数、满足则的最大值是____。‎ ‎(16)已知函数在区间上的最小值是,则的最小值是____。‎ 三.解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。‎ ‎(17)(本小题满分12分)‎ ‎ 已知函数 ‎ (I)求函数的最小正周期和单调增区间;‎ ‎ (II)函数的图象可以由函数的图象经过怎样的变换得到?‎ ‎(19)(本小题满分12分)‎ ‎ 如图,四面体ABCD中,O、E分别是BD、BC的中点,‎ ‎ ‎ ‎ (I)求证:平面BCD;‎ ‎ (II)求异面直线AB与CD所成角的大小;‎ ‎ (III)求点E到平面ACD的距离。‎ ‎(20)(本小题满分12分)‎ ‎ 已知椭圆的左焦点为F,O为坐标原点。‎ ‎ (I)求过点O、F,并且与椭圆的左准线相切的圆的方程;‎ ‎ (II)设过点F的直线交椭圆于A、B两点,并且线段AB的 ‎ 中点在直线上,求直线AB的方程。‎ ‎(21)(本小题满分12分)‎ ‎ 已知是二次函数,不等式的解集是且在区间上的最大值是12。‎ ‎ (I)求的解析式;‎ ‎ (II)是否存在实数使得方程在区间内有且只有两个不等的实数根?若存在,求出的取值范围;若不存在,说明理由。‎ ‎(22)(本小题满分14分)‎ ‎ 已知数列满足 ‎ (I)证明:数列是等比数列;‎ ‎ (II)求数列的通项公式;‎ ‎ (II)若数列满足证明是等差数列。‎ ‎2006年高考(福建卷)数学文试题答案 一.选择题:本大题考查基本概念和基本运算。每小题5分,满分60分。‎ ‎ DBBACA D BCCD 二.填空题:本大题考查基础知识和基本运算。每小题4分满分16分。‎ ‎  (14)   (15)4   (16)‎ 三.解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。‎ ‎(17)本小题主要考查三角函数的基本公式、三角恒等变换、三角函数的图象和性质等基本知识,以及推理和运算能力。满分12分。‎ ‎ (19)本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分12分。‎ ‎ (I)证明:连结OC ‎ ‎ ‎ ‎ ‎ 在中,由已知可得 ‎ 而 ‎ ‎ ‎ 即 ‎ ‎ ‎ 平面 ‎ (II)解:取AC的中点M,连结OM、ME、OE,由E为BC的中点知 ‎ 直线OE与EM所成的锐角就是异面直线AB与CD所成的角 ‎ 在中,‎ ‎ ‎ ‎ 是直角斜边AC上的中线,‎ ‎ ‎ ‎ 异面直线AB与CD所成角的大小为 ‎ (III)解:设点E到平面ACD的距离为 ‎ ‎ ‎ 在中,‎ ‎ ‎ ‎ 而 ‎ ‎ ‎ 点E到平面ACD的距离为 ‎(20)本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力。满分12分。‎ ‎ 解:(I)‎ ‎ 圆过点O、F,‎ ‎ 圆心M在直线上。‎ ‎ 设则圆半径 ‎ ‎ ‎ 由得 ‎ 解得 ‎ 所求圆的方程为 ‎ (II)设直线AB的方程为 ‎ 代入整理得 ‎ 直线AB过椭圆的左焦点F,方程有两个不等实根,‎ ‎ 记中点 ‎ 则 ‎ ‎ ‎ 线段AB的中点N在直线上,‎ ‎ ‎ ‎ ,或 ‎ 当直线AB与轴垂直时,线段AB的中点F不在直线上。‎ ‎ 直线AB的方程是或 ‎(21)本小题主要考查函数的单调性、极值等基本知识,考查运用导数研究函数的性质的方法,考查函数与方程、数形结合等数学思想方法和分析问题、解决问题的能力。满分12分。‎ ‎ (I)解:是二次函数,且的解集是 ‎ 可设 ‎ 在区间上的最大值是 ‎ 由已知,得 ‎ ‎ ‎ (II)方程等价于方程 ‎ 设 ‎ 则 ‎ 当时,是减函数;‎ ‎ 当时,是增函数。‎ ‎ ‎ ‎ 方程在区间内分别有惟一实数根,而在区间内没有实数根,‎ ‎ 所以存在惟一的自然数使得方程在区间内有且只有两个不同的实数根。‎ ‎(22)本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力。满分14分。‎ ‎ (I)证明:‎ ‎ ‎ ‎ 是以为首项,2为公比的等比数列。‎ ‎ (II)解:由(I)得 ‎ ‎ ‎   ‎ ‎ (III)证明:‎ ‎ ‎ ‎          ①‎ ‎   ②‎ ‎ ②-①,得 ‎ 即     ③‎ ‎      ④‎ ‎ ④-③,得 ‎ 即 ‎ ‎ ‎ 是等差数列。‎
查看更多

相关文章

您可能关注的文档