- 2021-05-13 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考题型之频率分布直方图
高考题型之 频率分布直方图 知识点: - 1 - 典型例题: - 1 - 答案 - 1 - 知识点: 典型例题: 1.某工厂对一批产品进行了抽样检测.有图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100), [100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是 0.150 0.125 0.100 0.075 0.050 频率/组距 (A)90 (B)75 (C) 60 (D)45 2.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于19秒。右图是按上述分组方法得到的频率分布直方图。设成绩小于17秒的学生人数占全班总人数的百分比为,成绩大于等于15秒且小于17秒的学生人数为,则从频率分布直方图中可分析出和分别为 (A) (B) (C) (D) 3.某个小区住户共户,为调查小区居民的月份用水量,用分层抽样的方法抽取了户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过m3的住户的户数为 A. B. C. D. 4. 某时段内共有辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过km/h的汽车数量为_____________; 5. 某个容量为100的样本的频率分布直方图如下,则在区间上的数据的频数为 . 6.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出( ) A.100人 B.90人 C.65人 D.50人 7.济南交警部门随机测量了顺河高架桥南下口某一时间段经过的2000辆汽车的时速,时速频率分布直方图如图所示,则时速超过70km/h的汽车数量为_______ 8.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下: 根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是 ( ) (A)20 (B)30 (C)40 (D)50 9.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 人. 10.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a= 。若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。 11.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm。 本类题的特征是:__________________________________________________________________________________ __________________________________________________________________________________________________ 本类题的做法是:__________________________________________________________________________________ __________________________________________________________________________________________________ 答案 1.【解析】:产品净重小于100克的概率为(0.050+0.100)×2=0.300, 已知样本中产品净重小于100克的个数是36,设样本容量为,则,所以,净重大于或等于98克并且小于104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.故选A. 2. A.【分析】:从频率分布直方图上可以看出,. 3.C【解析】以为样本容量可计算出超过用水量的户数为所以可估算户居民超过用水量的户数. 4. 5. 30 6.B 7.200 8.C 9.25 10.答案:0.030 3 11. [解析]考查频率分布直方图的知识。 100×(0.001+0.001+0.004)×5=30查看更多