- 2021-05-13 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学新课标理科试题及答案解析
2016年全国统一高考数学试卷(新课标Ⅲ)(理科) (使用地区:广西、云南、贵州) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 【2016新课标Ⅲ】设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=( ) A.[2,3] B.(﹣∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞) 【答案】D 【解析】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞), ∵T=(0,+∞), ∴S∩T=(0,2]∪[3,+∞), 【2016新课标Ⅲ】若z=1+2i,则=( ) A.1 B.﹣1 C.i D.﹣i 【答案】C 【解析】解:z=1+2i,则===i. 【2016新课标Ⅲ】已知向量=(,),=(,),则∠ABC=( ) A.30° B.45° C.60° D.120° 【答案】A 【解析】解:,; ∴; 又0≤∠ABC≤180°; ∴∠ABC=30°. 【2016新课标Ⅲ】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( ) A.各月的平均最低气温都在0℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20℃的月份有5个 【答案】D 【解析】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确 B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确 C.三月和十一月的平均最高气温基本相同,都为10°,正确 D.平均最高气温高于20℃的月份有7,8两个月,故D错误, 【2016新课标Ⅲ】若tanα=,则cos2α+2sin2α=( ) A. B. C.1 D. 【答案】A 【解析】解:∵tanα=, ∴cos2α+2sin2α====. 【2016新课标Ⅲ】已知a=2,b=3,c=25,则( ) A.b<a<c B.a<b<c C.b<c<a D.c<a<b 【答案】 A 【解析】解:∵a=2=, b=3, c=25=, 综上可得:b<a<c, 【2016新课标Ⅲ】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=( ) A.3 B.4 C.5 D.6 【答案】 B 【解析】解:模拟执行程序,可得 a=4,b=6,n=0,s=0 执行循环体,a=2,b=4,a=6,s=6,n=1 不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2 不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3 不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4 满足条件s>16,退出循环,输出n的值为4. 【2016新课标Ⅲ】在△ABC中,B=,BC边上的高等于BC,则cosA=( ) A. B. C.﹣ D.﹣ 【答案】 C 【解析】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ, ∵在△ABC中,B=,BC边上的高AD=h=BC=a, ∴BD=AD=a,CD=a, 在Rt△ADC中,cosθ===,故sinθ=, ∴cosA=cos(+θ)=coscosθ﹣sinsinθ=×﹣×=﹣. 【2016新课标Ⅲ】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A.18+36 B.54+18 C.90 D.81 【答案】 B 【解析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的四棱柱, 其底面面积为:3×6=18, 前后侧面的面积为:3×6×2=36, 左右侧面的面积为:3××2=18, 故棱柱的表面积为:18+36+9=54+18. 【2016新课标Ⅲ】在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( ) A.4π B. C.6π D. 【答案】 B 【解析】解:∵AB⊥BC,AB=6,BC=8, ∴AC=10. 故三角形ABC的内切圆半径r==2, 又由AA1=3, 故直三棱柱ABC﹣A1B1C1的内切球半径为, 此时V的最大值=, 【2016新课标Ⅲ】已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( ) A. B. C. D. 【答案】A 【解析】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0), 令x=﹣c,代入椭圆方程可得y=±b=±, 可得P(﹣c,), 设直线AE的方程为y=k(x+a), 令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka), 设OE的中点为H,可得H(0,), 由B,H,M三点共线,可得kBH=kBM, 即为=, 化简可得=,即为a=3c, 可得e==. 【2016新课标Ⅲ】定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( ) A.18个 B.16个 C.14个 D.12个 【答案】 C 【解析】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有: 0,0,0,0,1,1,1,1; 0,0,0,1,0,1,1,1; 0,0,0,1,1,0,1,1; 0,0,0,1,1,1,0,1; 0,0,1,0,0,1,1,1; 0,0,1,0,1,0,1,1; 0,0,1,0,1,1,0,1; 0,0,1,1,0,1,0,1; 0,0,1,1,0,0,1,1; 0,1,0,0,0,1,1,1; 0,1,0,0,1,0,1,1; 0,1,0,0,1,1,0,1; 0,1,0,1,0,0,1,1; 0,1,0,1,0,1,0,1.共14个. 二、填空题:本大题共4小题,每小题5分. 【2016新课标Ⅲ】(2015•新课标II)若x,y满足约束条件,则z=x+y的最大值为 . 【答案】 【解析】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大, 由得D(1,), 所以z=x+y的最大值为1+; 【2016新课标Ⅲ】函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移 个单位长度得到. 【答案】 【解析】解:∵y=f(x)=sinx+cosx=2in(x+),y=sinx﹣cosx=2in(x﹣), ∴f(x﹣φ)=2in(x+﹣φ)(φ>0), 令2in(x+﹣φ)=2in(x﹣), 则﹣φ=2kπ﹣(k∈Z), 即φ=﹣2kπ(k∈Z), 当k=0时,正数φmin=, 【2016新课标Ⅲ】已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是 . 【答案】 2x+y+1=0. 【解析】解:f(x)为偶函数,可得f(﹣x)=f(x), 当x<0时,f(x)=ln(﹣x)+3x,即有 x>0时,f(x)=lnx﹣3x,f′(x)=﹣3, 可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2, 则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1), 即为2x+y+1=0. 【2016新课标Ⅲ】已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= . 【答案】4 【解析】解:由题意,|AB|=2,∴圆心到直线的距离d=3, ∴=3, ∴m=﹣ ∴直线l的倾斜角为30°, ∵过A,B分别作l的垂线与x轴交于C,D两点, ∴|CD|==4. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 【2016新课标Ⅲ】已知数列{an}的前n项和Sn=1+λan,其中λ≠0. (1)证明{an}是等比数列,并求其通项公式; (2)若S5=,求λ. 【解析】解:(1)∵Sn=1+λan,λ≠0. ∴an≠0. 当n≥2时,an=Sn﹣Sn﹣1=1+λan﹣1﹣λan﹣1=λan﹣λan﹣1, 即(λ﹣1)an=λan﹣1, ∵λ≠0,an≠0.∴λ﹣1≠0.即λ≠1, 即=,(n≥2), ∴{an}是等比数列,公比q=, 当n=1时,S1=1+λa1=a1, 即a1=, ∴an=•()n﹣1. (2)若S5=, 则若S5=1+λ(•()4=, 即()5=﹣1=﹣, 则=﹣,得λ=﹣1. 【2016新课标Ⅲ】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1﹣7分别对应年份2008﹣2014. (1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明; (2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.646. 参考公式:r=, 回归方程=+t中斜率和截距的最小二乘估计公式分别为: =,=﹣. 【解析】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下: ∵r==≈≈≈0.996, ∵0.996>0.75, 故y与t之间存在较强的正相关关系; (2)==≈≈0.10, =﹣≈1.331﹣0.10×4≈0.93, ∴y关于t的回归方程=0.103+0.93, 2016年对应的t值为9, 故=0.10×9+0.93=1.83, 预测2016年我国生活垃圾无害化处理量为1.83亿吨. 【2016新课标Ⅲ】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点. (1)证明:MN∥平面PAB; (2)求直线AN与平面PMN所成角的正弦值. 【解析】(1)证明:法一、如图,取PB中点G,连接AG,NG, ∵N为PC的中点, ∴NG∥BC,且NG=, 又AM=,BC=4,且AD∥BC, ∴AM∥BC,且AM=BC, 则NG∥AM,且NG=AM, ∴四边形AMNG为平行四边形,则NM∥AG, ∵AG⊂平面PAB,NM⊄平面PAB, ∴MN∥平面PAB; 法二、 在△PAC中,过N作NE⊥AC,垂足为E,连接ME, 在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=, ∵AD∥BC, ∴cos,则sin∠EAM=, 在△EAM中, ∵AM=,AE=, 由余弦定理得:EM==, ∴cos∠AEM=, 而在△ABC中,cos∠BAC=, ∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC, ∴AB∥EM,则EM∥平面PAB. 由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC, ∴NE∥PA,则NE∥平面PAB. ∵NE∩EM=E, ∴平面NEM∥平面PAB,则MN∥平面PAB; (2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=. ∴AM2+MC2=AC2,则AM⊥MC, ∵PA⊥底面ABCD,PA⊂平面PAD, ∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD, ∴CM⊥平面PAD,则平面PNM⊥平面PAD. 在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角. 在Rt△PAC中,由N是PC的中点,得AN==, 在Rt△PAM中,由PA•AM=PM•AF,得AF=, ∴sin. ∴直线AN与平面PMN所成角的正弦值为. 【2016新课标Ⅲ】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点. (Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ; (Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. 【解析】(Ⅰ)证明:连接RF,PF, 由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=180°, ∴∠PFQ=90°, ∵R是PQ的中点, ∴RF=RP=RQ, ∴△PAR≌△FAR, ∴∠PAR=∠FAR,∠PRA=∠FRA, ∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR, ∴∠FQB=∠PAR, ∴∠PRA=∠PRF, ∴AR∥FQ. (Ⅱ)设A(x1,y1),B(x2,y2), F(,0),准线为 x=﹣, S△PQF=|PQ|=|y1﹣y2|, 设直线AB与x轴交点为N, ∴S△ABF=|FN||y1﹣y2|, ∵△PQF的面积是△ABF的面积的两倍, ∴2|FN|=1,∴xN=1,即N(1,0). 设AB中点为M(x,y),由得=2(x1﹣x2), 又=, ∴=,即y2=x﹣1. ∴AB中点轨迹方程为y2=x﹣1. 【2016新课标Ⅲ】设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记f(x)的最大值为A. (Ⅰ)求f′(x); (Ⅱ)求A; (Ⅲ)证明:|f′(x)|≤2A. 【解析】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx. (II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2. 当0<a<1时,f(x)等价为f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1, 令g(t)=2at2+(a﹣1)t﹣1, 则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2, 且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣, 令﹣1<<1,得a<(舍)或a>.因此A=3a﹣2 g(﹣1)=a,g(1)=3a+2,a<3a+2,∴t=1时,g(t)取得最大值,g(1)=3a+2,即f(x)的最大值为3a+2. 综上可得:t=1时,g(t)取得最大值,g(1)=3a+2,即f(x)的最大值为3a+2. ∴A=3a+2. ①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|, ∴A=2﹣3a, ②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(), 又|g()﹣g(﹣1)|=>0, ∴A=|g()|=, 综上,A=. (III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|, 当0<a≤时,|f′(x)|≤1+a≤2﹣4a<2(2﹣3a)=2A, 当<a<1时,A==++≥1, ∴|f′(x)|≤1+a≤2A, 当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A, 综上:|f′(x)|≤2A. 请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲] 【2016新课标Ⅲ】如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点. (1)若∠PFB=2∠PCD,求∠PCD的大小; (2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD. 【解析】(1)解:连接PA,PB,BC, 设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3, ∠PBA=∠4,∠PAB=∠5, 由⊙O中的中点为P,可得∠4=∠5, 在△EBC中,∠1=∠2+∠3, 又∠D=∠3+∠4,∠2=∠5, 即有∠2=∠4,则∠D=∠1, 则四点E,C,D,F共圆, 可得∠EFD+∠PCD=180°, 由∠PFB=∠EFD=2∠PCD, 即有3∠PCD=180°, 可得∠PCD=60°; (2)证明:由C,D,E,F共圆, 由EC的垂直平分线与FD的垂直平分线交于点G 可得G为圆心,即有GC=GD, 则G在CD的中垂线,又CD为圆G的弦, 则OG⊥CD. [选修4-4:坐标系与参数方程] 【2016新课标Ⅲ】在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2. (1)写出C1的普通方程和C2的直角坐标方程; (2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标. 【解析】解:(1)曲线C1的参数方程为(α为参数), 移项后两边平方可得+y2=cos2α+sin2α=1, 即有椭圆C1:+y2=1; 曲线C2的极坐标方程为ρsin(θ+)=2, 即有ρ(sinθ+cosθ)=2, 由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0, 即有C2的直角坐标方程为直线x+y﹣4=0; (2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时, |PQ|取得最值. 设与直线x+y﹣4=0平行的直线方程为x+y+t=0, 联立可得4x2+6tx+3t2﹣3=0, 由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0, 解得t=±2, 显然t=﹣2时,|PQ|取得最小值, 即有|PQ|==, 此时4x2﹣12x+9=0,解得x=, 即为P(,). [选修4-5:不等式选讲] 【2016新课标Ⅲ】已知函数f(x)=|2x﹣a|+a. (1)当a=2时,求不等式f(x)≤6的解集; (2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围. 【解析】解:(1)当a=2时,f(x)=|2x﹣2|+2, ∵f(x)≤6,∴|2x﹣2|+2≤6, |2x﹣2|≤4,|x﹣1|≤2, ∴﹣2≤x﹣1≤2, 解得﹣1≤x≤3, ∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}. (2)∵g(x)=|2x﹣1|, ∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3, 2|x﹣|+2|x﹣|+a≥3, |x﹣|+|x﹣|≥, 当a≥3时,成立, 当a<3时,|a﹣1|≥>0, ∴(a﹣1)2≥(3﹣a)2, 解得2≤a<3, ∴a的取值范围是[2,+∞). 2016年全国统一高考数学试卷(新课标Ⅲ)(理科) (使用地区:广西、云南、贵州) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【2016新课标Ⅲ】设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=( ) A.[2,3] B.(﹣∞,2]∪[3,+∞) C.[3,+∞) D.(0,2]∪[3,+∞) 2.【2016新课标Ⅲ】若z=1+2i,则=( ) A.1 B.﹣1 C.i D.﹣i 3.【2016新课标Ⅲ】已知向量=(,),=(,),则∠ABC=( ) A.30° B.45° C.60° D.120° 4.【2016新课标Ⅲ】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是( ) A.各月的平均最低气温都在0℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20℃的月份有5个 5.【2016新课标Ⅲ】若tanα=,则cos2α+2sin2α=( ) A. B. C.1 D. 6.【2016新课标Ⅲ】已知a=2,b=3,c=25,则( ) A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.【2016新课标Ⅲ】执行如图程序框图,如果输入的a=4,b=6,那么输出的n=( ) A.3 B.4 C.5 D.6 8.【2016新课标Ⅲ】在△ABC中,B=,BC边上的高等于BC,则cosA=( ) A. B. C.﹣ D.﹣ 9.【2016新课标Ⅲ】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A.18+36 B.54+18 C.90 D.81 10.【2016新课标Ⅲ】在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( ) A.4π B. C.6π D. 11.【2016新课标Ⅲ】已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( ) A. B. C. D. 12.【2016新课标Ⅲ】定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有( ) A.18个 B.16个 C.14个 D.12个 二、填空题:本大题共4小题,每小题5分. 13.【2016新课标Ⅲ】(2015•新课标II)若x,y满足约束条件,则z=x+y的最大值为 . 14.【2016新课标Ⅲ】函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移 个单位长度得到. 15.【2016新课标Ⅲ】已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f(x)在点(1,﹣3)处的切线方程是 . 16.【2016新课标Ⅲ】已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|= . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.【2016新课标Ⅲ】已知数列{an}的前n项和Sn=1+λan,其中λ≠0. (1)证明{an}是等比数列,并求其通项公式; (2)若S5=,求λ. 18.【2016新课标Ⅲ】如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1﹣7分别对应年份2008﹣2014. (1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明; (2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:yi=9.32,tiyi=40.17,=0.55,≈2.646. 参考公式:r=, 回归方程=+t中斜率和截距的最小二乘估计公式分别为: =,=﹣. 19.【2016新课标Ⅲ】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点. (1)证明:MN∥平面PAB; (2)求直线AN与平面PMN所成角的正弦值. 20.【2016新课标Ⅲ】已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点. (Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ; (Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程. 21.【2016新课标Ⅲ】设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记f(x)的最大值为A. (Ⅰ)求f′(x); (Ⅱ)求A; (Ⅲ)证明:|f′(x)|≤2A. 请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲] 22.【2016新课标Ⅲ】如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点. (1)若∠PFB=2∠PCD,求∠PCD的大小; (2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD. [选修4-4:坐标系与参数方程] 23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2. (1)写出C1的普通方程和C2的直角坐标方程; (2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标. [选修4-5:不等式选讲] 24.已知函数f(x)=|2x﹣a|+a. (1)当a=2时,求不等式f(x)≤6的解集; (2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围. 查看更多