- 2021-05-13 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国卷3高考理科数学含答案详解
绝密★启用前 2017年普通高等学校招生全国统一考试(新课标Ⅲ) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A=,B=,则AB中元素的个数为 A.3 B.2 C.1 D.0 2.设复数z满足(1+i)z=2i,则∣z∣= A. B. C. D.2 3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.学#科&网 根据该折线图,下列结论错误的是 A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月份 D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(+)(2-)5的展开式中33的系数为 A.-80 B.-40 C.40 D.80 5.已知双曲线C: (a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为 A. B. C. D. 6.设函数f(x)=cos(x+),则下列结论错误的是 A.f(x)的一个周期为−2π B.y=f(x)的图像关于直线x=对称 C.f(x+π)的一个零点为x= D.f(x)在(,π)单调递减 7.执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为 A.5 B.4 C.3 D.2 8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A. B. C. D. 9.等差数列的首项为1,公差不为0.若a2,a3,a6成等比数列,则前6项的和为 A.-24 B.-3 C.3 D.8 10.已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为 A. B. C. D. 11.已知函数有唯一零点,则a= A. B. C. D.1 12.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= +,则+的最大值为 A.3 B.2 C. D.2 二、填空题:本题共4小题,每小题5分,共20分。 13.若,满足约束条件,则的最小值为__________. 14.设等比数列满足a1 + a2 = –1, a1 – a3 = –3,则a4 = ___________. 15.设函数则满足的x的取值范围是_________。 16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论: ①当直线AB与a成60°角时,AB与b成30°角; ②当直线AB与a成60°角时,AB与b成60°角; ③直线AB与a所称角的最小值为45°; ④直线AB与a所称角的最小值为60°; 其中正确的是________。(填写所有正确结论的编号) 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分) △ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2. (1)求c; (2)设D为BC边上一点,且AD AC,求△ABD的面积. 18.(12分) 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率。 (1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列; (2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?学科*网 19.(12分) 如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD⊥平面ABC; (2)过AC的平面交BD于点E,若平面AEC把四面体ABCD 分成体积相等的两部分,求二面角D–AE–C的余弦值. 20.(12分) 已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆. (1)证明:坐标原点O在圆M上; (2)设圆M过点P(4,-2),求直线l与圆M的方程. 21.(12分) 已知函数 =x﹣1﹣alnx. (1)若 ,求a的值; (2)设m为整数,且对于任意正整数n,﹤m,求m的最小值. (二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修44:坐标系与参数方程](10分) 在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为.设l1与l2的交点为P,当k变化时,P的轨迹为曲线C. (1)写出C的普通方程; (2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径. 23.[选修45:不等式选讲](10分) 已知函数f(x)=│x+1│–│x–2│. (1)求不等式f(x)≥1的解集; (2)若不等式f(x)≥x2–x +m的解集非空,求m的取值范围. 2017年理科数学试题正式答案 一、选择题 1.B 2.C 3.A 4.C 5.B 6.D7.D 8.B 9.A 10.A 11.C 12.A二、填空题13. -1 14. -8 15. 16. ②③ 三、解答题17.解:(1)由已知得 tanA=在 △ABC中,由余弦定理得 (2)有题设可得 故△ABD面积与△ACD面积的比值为 又△ABC的面积为 18.解:(1)由题意知,所有的可能取值为200,300,500,由表格数据知 . 因此的分布列为 0.2 0.4 0.4 ⑵由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑 当时, 若最高气温不低于25,则Y=6n-4n=2n 若最高气温位于区间,则Y=6×300+2(n-300)-4n=1200-2n; 若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n; 因此EY=2n×0.4+(1200-2n)×0.4+(800-2n) ×0.2=640-0.4n 当时,若最高气温不低于20,则Y=6n-4n=2n; 若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n; 因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n 所以n=300时,Y的数学期望达到最大值,最大值为520元。 19.解:(1)由题设可得, 又是直角三角形,所以取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO 又由于所以 (2)由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系,则 由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E.故 设是平面DAE的法向量,则可取设是平面AEC的法向量,则同理可得 则所以二面角D-AE-C的余弦值为 20.解(1)设 由可得又=4 因此OA的斜率与OB的斜率之积为所以OA⊥OB故坐标原点O在圆M上. (2)由(1)可得 故圆心M的坐标为,圆M的半径 由于圆M过点P(4,-2),因此,故 即由(1)可得, 所以,解得. 当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为 21.解:(1)的定义域为.①若,因为,所以不满足题意;②若,由知,当时,;当时,,所以在单调递减,在单调递增,故x=a是在的唯一最小值点.由于,所以当且仅当a=1时,.故a=1 (2)由(1)知当时,令得,从而 故而,所以m的最小值为3. 22.解:(1)消去参数t得l1的普通方程;消去参数m得l2的普通方程设P(x,y),由题设得,消去k得. 所以C的普通方程为 (2)C的极坐标方程为 联立得. 故,从而 代入得,所以交点M的极径为. 23.解: (1)当时,无解; 当时,由得,,解得当时,由解得.所以的解集为. (2)由得,而 且当时,.故m的取值范围为查看更多