高考数学压轴题秒杀

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学压轴题秒杀

第五章 压轴题 秒杀 ‎ ‎  很多朋友留言说想掌握秒杀的最后一层。 关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。 压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。   不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。  想领悟、把握压轴题的思路,给大家推荐几道题目。  全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。  08全国一,08全国二,07江西,08山东,07全国一 ‎ ‎ ‎ 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。‎ 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高) 1: 通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。 尤其推荐我押题的第一道数列解答题。 ) 2.: 裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3: 数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。‎ 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!!‎ ‎ ‎ 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。‎ ‎(22)(本小题满分14分)‎ 设函数f(x)=x2+b ln(x+1),其中b≠0.‎ ‎(Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性;‎ ‎(Ⅱ)求函数f(x)的极值点;‎ ‎(Ⅲ)证明对任意的正整数n,不等式ln( )都成立.‎ ‎ 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?  ‎ 看压轴问的形式 , 想想我之前关于压轴题思路的讲解, 看出来么?  第三问其实就是直接利用第一问和第二问的结论,   很明显的令 1/n 为 x    这道题就出来了。 这也证明了我之前对压轴题的评述吧。当然这只是例子之一了,绝大多数压轴题都是这样的。‎ 下面,下面,下面, 重点来了。‎ 大家是否眼熟这个不等式呢?   ln X<= X--1     你可以利用导数去证明这个不等式的正确性,但我想说的是,这个小小的不等式,太有用了。 什么用?   将一个对数形式的函数转化为一个 X--1   这样简单的线性函数, 多么漂亮的一个式子!可以说,导数不等式证明中,见到自然对数,我第一个想的就会是这个不等式,看能否利用这个不等式将题目转化为特别容易做的一道题。‎ ‎ 这也是一种很重要而且经典的缩放! 不信的话大家去看07--10年的全国各地高考题,看看有多少省用到了这个不等式的! 而下面这道我认为导数解答题中特经典的一道的简单解法,就是用了这个不等式!   再次强调:压轴题中,见到对数函数式的不等式证明,第一个要想的是这个不等式!‎ ‎ ‎ 再举几个例子:‎ ‎1. 一个三角形的三内角成等差数列,对应的三边成等比数列,则三内角所成等差数列的公差等于__‎ 解:‎ 这个题真算的话 有点难度 也挺麻烦 但考试的时候 完全可以秒杀 直接特殊化为等边三角形 答案就出来了 ‎ 等边三角形满足题意么? 满足, 只要不违背题意 条件随你加, 随你加强 所以公差为0‎ ‎ ‎ 几秒钟一道很难的题 这就是秒杀的目的所在 这个题条件很强,既有角的限制又有边的限制,就说明答案唯一 可是,那是考试现场时的秒杀。 对一道能秒杀的题,不仅要秒杀,还要真正做出来才算 详解:‎ ‎ ‎ 假设A<=B<=C A+C=2B  b平方=ac 用正弦定理得出COS(A-C)=1‎ 也可用余弦定理求出ABC。‎ ‎ ‎ ‎ ‎ 第六章  再说秒杀和压轴题 以下为视频讲解内容:‎ 秒杀也分几类:最常用的一般是特殊性(有些人理解的特殊值,其实特殊值也是特殊化的一种罢了,还有其实技巧不在这里,而在于这个特殊值你如何取,取得好,那叫艺术,取得不好.......嗯!)‎ 第一题:A[N]是任意等比数列,它的前n项和,前2n项和,前3n项和分别是x,y,z,则下列等式恒成立的是 ‎1.X+Y=2Y           2.Y(Y-X)=Z(Z-X)‎ ‎3.Y平方=XZ         4.Y(Y-X)=X(Z-X)‎ 如何秒杀呢,很明显,取特殊值,如何取呢?以前说过,见到A[N]是任意等比数列的等等或者说见到任意两字的,往往就是我们发挥的地方。‎ 我们令A[N]=1,呵呵,很特殊了吧,还不止,我们这里再令N=1,这样题目变成什么了呢?‎ 我翻译一下:已知A[N]是任意等比数列,它的前1项和x,前2项和Y,前3项和是z,则下列等式恒成立的是?‎ 你猜,呵呵,这样直接可以排除2,3了,那么1,4呢?‎ 我们假设A[1]=1,A[2]=2,A[3]=4,这样符合题意吧?‎ 很明显1不正确,4任然正确,答案是4‎ ‎ ‎ 第二题:如图,在 中,点 是 的中点,过点 的直线分别交直线 , 于不同的两点 ,若 , ,则 的值为                               .‎ ‎ 向量如何秒杀呢,其实就只说向量,也有两三钟秒杀的方法,我觉得好用的就是特殊化+坐标化!!‎ 呵呵,就是把三角形特殊化为等腰直角三角形,这意思也是任意三角形吧,‎ 按照题意,我们画出MN的直线,若 , ,根据上面的两个公式,可以求出,大家记得吗---是直线的截距式(不记得的都面壁去吧,这可是基础)‎ 根据截距式我们得出MN的直线方程为MX+NY=1,我们还有个条件没有用,直线MN过中点,明显BC中点为(1/2,1/2),对吧,带入得M+N=2‎ 这个是07年江西的一道高考题,常规方法要比这个麻烦的多,而且可能大部分同学还不会做,而换成秒杀的—就是最基本的加减运算啦!!‎ 其实秒杀呢,每张卷子都能用到的是那种集合,求范围等等的题目,就不举例子了!!‎ 还有就是三角函数,解析几何(这个主要是取特殊位置的直线),至于三角函数,也分好多种吧,比如,题目让你求一个三角函数表达式的值,而且是道选择题。‎ ‎ ‎ 比如哦:tanA*tanB+conA*sinB等等的算式吧,然后选择项里面都是常数,也就是和AB无关,那么很明显,不管AB取什么,结果都一样,这时候,我们就可以随便给AB值,就可以得出最后结果,这样的题我见过不少!!‎ 上面说的都是一些简单但很常用的,难一点的应该算是变换,或者用到复指数等,比如函数旋转等等,就可以利用复向量的旋转特性去解决,哦,对了,还有一种很常用的,我随便出题:‎ X平方+Y平方=1,求X+Y的取值范围 常规的方法肯定是画图等等,或者消元了呗,但我们可以用三角函数去做,X平方+Y平方=1,令X=COSA,Y=SINA,也就是求conA+sinA的范围,明显是正负根2,是吧?一眼就看出来了,当然,一般题目不会这么简单,比如:‎ ‎3X平方+4Y平方=1,求X,Y取值范围,,这时候画图就不好使了哦,因为不是园,但三角函数依然可以,我们令3X平方=conA平方,4Y平方=sinA平方,然后是不是和上面一样了呢!!‎ 好了秒杀就这样吧!‎ ‎ ‎ 压轴题 下面这道是我高考的压轴题,是道椭圆的题,不算难。‎ 大家应该知道,压轴题一般会在数列不等式,解析几何两者之间选一道,数列的也想整一道例题,可时间有限,就算了。‎ 下面是09年的山东理科数学压轴题:‎ ‎ ‎ 第一问:送分 第二问: ,呵呵,我还记得在考场上,我看到 时就笑了,高考题考来考去也就是这些基本的不变的东西。‎ 这个代表什么呢?这个是题眼,其实我们都很清楚。‎ OA*OB=0(向量点乘),其实看到这里,后面的不用想也能再脑中出来一推东西,我大概说下:‎ ‎ ‎ 首先OA*OB=0,所以X1X2+Y1Y2=0‎ 明显韦达定理要用了,然后要连立直线了,比如设直线AB为:‎ Y=KX+M  (设出来这个直线的时候,脑子里面应该本能的想到一个词“分类”,就是K不存在的情况,一定要分类,给大家说,只要能分类的,一定要分类,因为每一个分类就有一定的分,我们的目的就是拿分!!)‎ 然后可以得出K和M的一个等式,(有一个式子,那肯定能根据题目其它的一个条件得出另外一个式子,这两个式子联立,一般就可以做出来了)‎ 哦,这个说明下,这是看到OA*OB=0后出来的一推东西,后面的还没看呢,继续看,呵呵出来了,切线,我们都知道,根据切线,肯定能得出一个等式,这样题目思路就清晰了!‎ 上面这些,大家是不是都能熟练的背下来呢,其实这道题难得不是这些,难在你是不是明白题意。‎ 还有对圆锥曲线问题,大家心里一定一定要坚定一个信念----那就是直线和曲线联立!!‎ 这句话很重要,只有你能找到直线和曲线联立(一定要找对哦,比如说这道题,你总不能OA和椭圆联立吧?!只有你能想到用AB去联立,那么后面的一直到韦达定理,一般就可以得8分了。大家可能会想,谁都知道用AB联立,可是到了高考那样的氛围,你还能像平时一样大脑清醒吗?而且万一不是一条直线呢等等的情况,你真不一定找到)‎ ‎ ‎ 题目还要:并求|AB |的取值范围,若不存在说明理由 玄长公式,对吧,因为知道了K和M 的关系,所以玄长公式里面只有一个K ,而K又有一定的范围,所以再结合不等式的知识,可以求出范围,当然还要考虑K不存在的情况,不然又要扣分!‎ ‎ ‎ 啰嗦了这么多,想告诉大家的:其实就是一定要有思路。思路哪里来的?是不是从OA*OB=0这里展开一系列的想法呢?可以说,思路就是一个题眼,得出一个总体框架,然后在实际做题中把各个细节填满,问题在于,你如何知道哪里是题眼?就是知道,你如何正确处理?‎ ‎ ‎ 嗯,问到点子上了,我记得我高二高三的时候,每做一道很典型的题,我都会把这道题想的很透很透,然后,闲暇时,脑子里想的就是最近做过的和新学得知识,时间上了,基本上见些东西,就能本能的搜索到相应的应对方法。‎ ‎ ‎ 大家可能会问,高考题是会变的,而且数学又是一门很灵活的东西,随便一点变化,都可以出来很多很多的题目。其实高考是在变,而且变的很灵活。‎ 但是高考中更多的是不变,所谓不变就是知识点不变,考点不变(相对来说吧),以及更重要的是难题的入手点不变!!或者就是说题眼不变,最多就是变个说法!!‎ 就拿OA*OB=0来说,可以衍生出很多不同的说法,比如中点,角分线等等,还有比如向量AF=3FB向量,这个也是大题中常见的。‎ 这样的如何出处理?,带入坐标,会得到两个式子,这两个式子中的一个比较简单比如:X2=3X1,还有一个关于Y 的,如何用,任何时候,都只用其中一个,你如果两个都用,那你就...‎ 用哪个呢?很显然啊,用X2=3X1,这个对吧,因为这个简单。‎ 然后再如何做呢?这个可以用韦达定理了吗?其实可以,只要对这个式子做几次变化,就可以用韦达定理了,从而又要联立直线。‎ 或者你可以联立后,解除X1,X2,然后带入X2=3X1,一样可以得到一个等式。‎ 我上面说的这些,都是需要你平时不断的积累!‎ 我之前说过,重复的做试卷----,要做的是什么?是像圆锥曲线,数列不等式,立体几何等等的很复杂的解答题。。。。‎ ‎ ‎ 我高三的时候,一张卷子看过去,基本上所有题的思路都立马出来了,那时候我在干嘛?我就做圆锥计算....就是为了训练自己的卷面,速度和正确率。‎ 不知道大家有什么收获,其实每一个题目(就算是最难的数列,圆锥曲线等),都是有着明显的切入点的,所谓切入点,我觉得就是命题人和考生之间的一种约定。‎ 一定要把这个切入点(暗示)抓出来!!‎ 如何一眼就看出来呢?这要靠平时积累,很累,但收获很大.....‎ 比如B+C=6,或者B+C=BC 等等,一看就是余弦定理 ‎ ‎ 还有很多很多.....做题积累吧!!‎ ‎ ‎ ‎“秒杀”高考综合题系列之(一)——‎ 点差法在解析几何综合题中的应用 优能中学 从强 到高三的同学都知道,浙江省高考在解析几何章节的考查内容肯定包含一道综合题,一般多是椭圆和抛物线,按照命题的规律和趋势,我们发现以下两点:(1)理科数学在此章节一般考察椭圆,文科数学一般考察抛物线;(2)考察的题型一般是直线与解析几何的位置关系。诸位可以翻看一下浙江过往几年的考试试卷看看。‎ 上过从老师高考班的同学应该记得,在解决解析几何图形与直线相切这个位置关系的题型的时候,“抄一个,代一个”这六个字可以帮助大家快速提升做题速度。如果大家要用判别式、位置关系等通法解决此类问题时,耗费5~10分钟不说,5~10分钟的计算量还不一定能保证结果正确。但诸位如果知道“抄一个,代一个”,一旦看到直线与圆、椭圆、双曲线、抛物线等相切问题时,应做到能在10秒钟以内准确地写出切线的方程。‎ 当然,直线与上面图形的位置关系除了相切以外,另外一种更常考的位置是相交。在相交的题型中,一旦看到“弦长”或者“面积”等关键词时,应立即想到“设直线、代曲线、根与系数搞定一切”(弦长公式)。相信大家对这种题型应该有较深的体会了。‎ 今天我在这里要跟大家探讨的是:题目中出现“直线与椭圆交于两点A、B”(即AB是椭圆内的一条弦)、“AB中点M”等关键词时的解题方法。“点差法”精髓在于“设而不求”,通过点差法有个重要的结论要求大家记住。‎ 设椭圆方程为,任意一条直线交椭圆于,两点,则 两式相减得到,移向整理后得到:‎ ‎ 即:(M为AB中点)‎ 同样的道理,对于长轴在y轴上的椭圆,结论为.‎ 也就是说:椭圆内任意弦AB所在直线的斜率与过该弦中点并且经过原点的直线的斜率乘积为一个常数。‎ ‎【再拓展】当A、B两点离的非常近时,可以将这个结论看做:过椭圆上某点P有一条切线,则 请看2009年浙江高考第21题 已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.‎ ‎(I)求椭圆的方程;(II)设点在抛物线:上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.‎ 也许很多同学都看过所谓“标准答案”给我们的解题过程,设出直线方程后代入,经过两次判别式来确定h的取值范围。这也是很多参考书上给出的参考解题思路。不过按照此种通法解题思路,计算量和整理的工作至少需要7~10多分钟。‎ 第一问很简单,结果为:‎ 按照我们上面讲到的“点差法”,在第二问中一旦看到“弦”、“中点”等关键词,就应立即想到:(T为MN中点)‎ 首先想到MN的斜率即是点P处的切线斜率,设点P横坐标为,则点P纵坐标为 根据导函数可得:‎ MN中点T的横坐标即PA中点横坐标,‎ 根据“抄一个,代一个”的技巧,很容易直接就得到过点P切线直线方程,将的值代入直线方程,得: 所以 于是,整理,得: ,显然这是一个基本不等式,非常容易就得到或者 很显然,对于,此时的抛物线内部包含了椭圆,切线与椭圆没有交点,排除掉;‎ 所以。的最小值为1。‎ ‎【总结一下】注意题目中出现的“弦”、“中点”等关键词,利用点差法推导出来的这个结论,不仅可以提供解决题目的思路,很顺畅地进行“需要什么就写什么”数学解题,而且可以大大减少运算量,提高速度和正确率。‎ 对于抛物线,利用点差法也可以有类似的结论,由于篇幅关系,不再赘述。‎ ‎【课外练习】利用常规方法解决下面问题,再用上面的小结论分析解决一次。比较一下两种方法所需的时间。‎ ‎【练习I】如图,椭圆=1(a>b>0)与过点的直线有且只有一个公共点T,且椭圆的离心率e=。(I)求椭圆方程;(II)设F、F分别为椭圆的左、右焦点,M为线段AF的中点,求证:∠ATM=∠AFT。‎ ‎【解答提示】如果利用常规解法,第一问需要5-10的时间,我们可以将这个结论扩充到直线与椭圆相切的模型,利用该结论很快得到OT直线的斜率,进而得到点T的坐标,问题得解。在第一小问解决后,根据相似或者余弦定理都可得证第二小问。‎ ‎【练习II】已知,直线,椭圆,分别为椭圆的左、右焦点.‎ ‎(Ⅰ)当直线过右焦点时,求直线的方程;‎ ‎(Ⅱ)设直线与椭圆交于两点,,的重心分别为.若原点在以线段为直径的圆内,求实数的取值范围。‎ ‎【解答提示】重心是三角形中线的交点,出现“中点”,同时,注意在“圆内”这个词,我会跟同学强调,看到“圆内”这个词,有两个角度可以考虑:第一,圆心到该点的距离小于半径,这个思路最直观,但在此题中,这个方法比较繁琐;第二,说明该点和直径两端点所成的夹角大于90°,可考虑使用向量,向量点积小于0即可。‎ ‎【练习III】(湖北省八校高2008第二次联考)已知A,B是抛物线(P>0)上的两个动点,为坐标原点,非零向量,满足。‎ ‎(Ⅰ)求证:直线经过一定点;‎ ‎(Ⅱ)当的中点到直线的距离的最小值为时,求的值。‎ ‎【解答提示】从老师强调,看到,立即想到,则立即想到老师讲的一个结论——直线AB通过一个定点;第一问的证明即证出。第二问出现“中点”,即可考虑点差法。‎ ‎【练习IV】(温州市2010届高三第一次适用性测试)已知为椭圆:短轴的两个端点,为椭圆的一个焦点,为正三角形,‎ ‎(I)求椭圆的方程; (II)设点P在抛物线:上,在点P处的切线与椭圆交于A、C两点,若点P是线段AC的中点,求AC的直线方程。‎ ‎【解答提示】第一问对一般学生来说,不是问题;可求出椭圆的方程。在第二问中又出现“弦”(其实就是线段AC)、“中点”,想想老师讲的结论。‎ ‎【练习V】(2010)嘉兴市高三教学测试 ‎【练习VI】(2010金华十校)‎ 已知抛物线 ‎(1)设是C1的任意两条互相垂直的切线,并设,证明:点M的纵坐标为定值;‎ ‎(2)在C1上是否存在点P,使得C1在点P处切线与C2相交于两点A、B,且AB的中垂线恰为C1的切线?若存在,求出点P的坐标;若不存在,说明理由。‎
查看更多

相关文章

您可能关注的文档