- 2021-05-13 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国高考数学试题分类汇编——圆锥曲线
全国高考数学试题分类汇编——圆锥曲线 参考答案(续) 35.(2005广东卷第17题) 解:(I)设△AOB的重心为G(x,y),A(x1,y1),B(x2,y2),则 …(1) ∵OA⊥OB ∴,即,……(2) 又点A,B在抛物线上,有,代入(2)化简得 ∴ 所以重心为G的轨迹方程为 (II) 由(I)得 当且仅当即时,等号成立。 所以△AOB的面积存在最小值,存在时求最小值1; 36.(2005江西卷文第21题,满分12分) 解:(1)设M(y,y0),直线ME的斜率为k(l>0) 则直线MF的斜率为-k,方程为 ∴由,消 解得 ∴(定值) 所以直线EF的斜率为定值 (2)直线ME的方程为 由得 同理可得 设重心G(x, y),则有 消去参数得 O A B P F 37.(2005江西卷理第22题,满分14分) 解:(1)设切点A、B坐标分别为, ∴切线AP的方程为: 切线BP的方程为: 解得P点的坐标为: 所以△APB的重心G的坐标为 , 所以,由点P在直线l上运动,从而得到重心G的轨迹方程为: (2)方法1:因为 由于P点在抛物线外,则 ∴ 同理有 ∴∠AFP=∠PFB. 方法2:①当所以P点坐标为,则P点到直线AF的距离为: 即 所以P点到直线BF的距离为: 所以d1=d2,即得∠AFP=∠PFB. ②当时,直线AF的方程: 直线BF的方程: 所以P点到直线AF的距离为: 同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB. 38. (2005重庆卷文第21题,满分12分) 解:(Ⅰ)设双曲线方程为 由已知得 故双曲线C的方程为 (Ⅱ)将 由直线l与双曲线交于不同的两点得 即 ① 设,则 而 于是 ② 由①、②得 故k的取值范围为 39. (2005重庆卷理第21题,满分12分) 解:(Ⅰ)设双曲线C2的方程为,则 故C2的方程为 (II)将 由直线l与椭圆C1恒有两个不同的交点得 即 ① . 由直线l与双曲线C2恒有两个不同的交点A,B得 解此不等式得 ③ 由①、②、③得 故k的取值范围为 40. (2005浙江卷文第19题) 本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角等基础知识,考查解析几何的基本思想方法和综合解题能力。满分14分。 解:(Ⅰ)设椭圆方程为,半焦距为,则 (Ⅱ) 41. (2005浙江卷理第17题) O F2 F1 A2 A1 P M 解:(I)设椭圆方程为(),半焦距为c, 则 ,, 由题意,得 ,解得 故椭圆方程为 (II)设P( 当时, 当时, 只需求的最大值即可。 直线的斜率,直线的斜率 当且仅当=时,最大, ∴Q(m,±),|m|>1. 42. (2005天津卷理第21题,文第22题,满分14分) 解:(Ⅰ)由抛物线的方程()得,焦点坐标为,准线方程为. (Ⅱ)证明:设直线的方程为,直线的方程为. 点和点的坐标是方程组的解.将②式代入①式得,于是,故 ③ 又点和点的坐标是方程组的解.将⑤式代入④式得.于是,故. 由已知得,,则. ⑥ 设点的坐标为,由,则. 将③式和⑥式代入上式得,即. ∴线段的中点在轴上. (Ⅲ)因为点在抛物线上,所以,抛物线方程为. 由③式知,代入得. 将代入⑥式得,代入得. 因此,直线、分别与抛物线的交点、的坐标为 ,. 于是,, . 因为钝角且、、三点互不相同,故必有. 求得的取值范围是或.又点的纵坐标满足,故当时,;当时,.即 43. (2005上海卷文第21题,本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.) [解](1) 抛物线y2=2px的准线为x=-,于是4+=5, ∴p=2. ∴抛物线方程为y2=4x. (2)∵点A是坐标是(4,4), 由题意得B(0,4),M(0,2), 又∵F(1,0), ∴kFA=;MN⊥FA, ∴kMN=-, 则FA的方程为y=(x-1),MN的方程为y-2=-x,解方程组得x=,y=, ∴N的坐标(,). (1) 由题意得, ,圆M.的圆心是点(0,2), 半径为2, 当m=4时, 直线AK的方程为x=4,此时,直线AK与圆M相离. 当m≠4时, 直线AK的方程为y=(x-m),即为4x-(4-m)y-4m=0, 圆心M(0,2)到直线AK的距离d=,令d>2,解得m>1 ∴当m>1时, AK与圆M相离; 当m=1时, AK与圆M相切; 当m<1时, AK与圆M相交. 44. (2005上海理第19题,,本题共有3个小题,满分14分,其中第1小题满分6分, 第2小题满分8分) [解](1)由已知可得点A(-6,0),F(0,4) 设点P(,),则={+6, },={-4, },由已知可得 则2+9-18=0, =或=-6. 由于>0,只能=,于是=. ∴点P的坐标是(,) (2) 直线AP的方程是-+6=0. 设点M(,0),则M到直线AP的距离是. 于是=,又-6≤≤6,解得=2. 椭圆上的点(,)到点M的距离有 , 由于-6≤≤6, ∴当=时,d取得最小值 45. (2005山东卷理第22题,文第22题) 解:(I)如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为; (理II)如图,设,由题意得(否则)且所以直线的斜率存在,设其方程为,显然,将与联立消去,得由韦达定理知① (1)当时,即时,所以,所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点 (2)当时,由,得== 将①式代入上式整理化简可得:,所以, 此时,直线的方程可表示为即 所以直线恒过定点 所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. (文II) 直线的方程可表示为即 所以,直线恒过定点. 46.(2005湖南卷理第19题,文第21题,满分14分) (Ⅰ)证法一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是. 所以点M的坐标是(). 由 即 证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是 所以 因为点M在椭圆上,所以 即 解得 (Ⅱ)当时,,所以 由△MF1F2的周长为6,得 所以 椭圆方程为 (Ⅲ)解法一:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,即 设点F1到l的距离为d,由 得 所以 即当△PF1F2为等腰三角形. 解法二:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|, 设点P的坐标是, 则 由|PF1|=|F1F2|得 两边同时除以4a2,化简得 从而 于是. 即当时,△PF1F2为等腰三角形. 47.(2005湖北卷理第21题,文第22题) (I)解法1:依题意,可设直线AB的方程为,整理得 ① 设①的两个不同的根, ② 是线段AB的中点,得 解得k=-1,代入②得,>12,即的取值范围是(12,+). 于是,直线AB的方程为 解法2:设 依题意, (II)解法1:代入椭圆方程,整理得 ③ ③的两根, 于是由弦长公式可得 ④ 将直线AB的方程 ⑤ 同理可得 ⑥ 假设在在>12,使得A、B、C、D四点共圆,则CD必为圆的直径,点M为圆心.点M到直线AB的距离为 ⑦ 于是,由④、⑥、⑦式和勾股定理可得 故当时,A、B、C、D四点均在以M为圆心,为半径的圆上. (注:上述解法中最后一步可按如下解法获得: A、B、C、D共圆△ACD为直角三角形,A为直角 ⑧ 由⑥式知,⑧式左边= 由④和⑦知,⑧式右边= ∴⑧式成立,即A、B、C、D四点共圆 解法2:由(II)解法1及. 代入椭圆方程,整理得 ③ 将直线AB的方程代入椭圆方程,整理得 ⑤ 解③和⑤式可得 不妨设 ∴ 计算可得,∴A在以CD为直径的圆上. 又B为A关于CD的对称点,∴A、B、C、D四点共圆. (注:也可用勾股定理证明AC⊥AD) 48.(2005福建卷理第21题,文第22题) (I)解法一:直线, ① 过原点垂直的直线方程为, ② 解①②得 ∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上, ∵直线过椭圆焦点,∴该焦点坐标为(2,0). 故椭圆C的方程为 ③ 解法二:直线. 设原点关于直线对称点为(p,q),则解得p=3. ∵椭圆中心(0,0)关于直线的对称点在椭圆C的右准线上, ∵直线过椭圆焦点,∴该焦点坐标为(2,0). 故椭圆C的方程为 ③ (II)解法一:设M(),N(). 当直线m不垂直轴时,直线代入③,整理得 点O到直线MN的距离 即 即 整理得 当直线m垂直x轴时,也满足. 故直线m的方程为 或或 经检验上述直线均满足.所以所求直线方程为 或或 解法二:设M(),N(). 当直线m不垂直轴时,直线代入③,整理得 ∵E(-2,0)是椭圆C的左焦点, ∴|MN|=|ME|+|NE| = 以下与解法一相同. 解法三:设M(),N(). 设直线,代入③,整理得 即 ∴=,整理得 解得或 故直线m的方程为或或 经检验上述直线均满足 所以所求直线方程为或或 49.(2005北京卷理第18题,文第20题) 解:(I)W1={(x, y)| kx查看更多