- 2021-05-13 发布 |
- 37.5 KB |
- 27页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考新课标2理科数学真题及答案
2017年普通高等学校招生全国统一考试(新课标全国卷Ⅱ) 理科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。 第Ⅰ卷 一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1) A. B. C. D. (2)设集合,.若,则 A. B. C. D. (3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A.1盏 B.3盏 C.5盏 D.9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为 A. B. C. D. (5)设,满足约束条件,则的最小值是 A. B. C. D. (6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有 A.12种 B.18种 C.24种 D.36种 (7)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则 A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 (8)执行右面的程序框图,如果输入的,则输出的 A.2 B.3 C.4 D.5 (9)若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为 A.2 B. C. D. (10)已知直三棱柱中,,,,则异面直线与所成角的余弦值为 A. B. C. D. (11)若是函数的极值点,则的极小值为 A. B. C. D.1 (12)已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是 A. B. C. D. 第Ⅱ卷 二、填空题:本题共4小题,每小题5分,共20分。 (13)一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则 . (14)函数()的最大值是 . (15)等差数列的前项和为,,,则 . (16)已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则 . 三、解答题:共70分。解答应写出文字说明、解答过程或演算步骤。 (一)必考题:共60分。 (17)(12分) 的内角的对边分别为 ,已知. (1)求 (2)若 , 面积为2,求 (18)(12分) 淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各箱水产品的产量(单位:kg),其频率直方图如下: (1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01) 附: 0.050 0.010 0.001 k 3.841 6.635 10.828 (19)(12分) 如图,四棱锥中,侧面为等比三角形且垂直于底面三角形ABCD, ,,是的中点, (1)证明:直线∥平面PAB (2)点M在棱PC 上,且直线与底面所成锐角为 ,求二面角的余弦值 20. (12分) 设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为N,点P满足. (1)求点P的轨迹方程; (2)设点Q在直线上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F. 21.(12分) 已知函数且. (1)求a; (2)证明:存在唯一的极大值点,且. (二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,按所做的第一题计分。 (22)[选修4-4:坐标系与参数方程](10分) 在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程; (2)设点A的极坐标为,点B在曲线上,求面积的最大值. (23)[选修4-5:不等式选讲](10分) 已知a>0,b>0,a3+b3=2.证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2.. 2017年全国统一高考数学试卷(理科)(新课标Ⅱ) 参考答案与试题解析 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2017•新课标Ⅱ)=( ) A.1+2i B.1﹣2i C.2+i D.2﹣i 【解答】解:===2﹣i, 故选 D. 2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=( ) A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5} 【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}. 若A∩B={1},则1∈A且1∈B, 可得1﹣4+m=0,解得m=3, 即有B={x|x2﹣4x+3=0}={1,3}. 故选:C. 3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A.1盏 B.3盏 C.5盏 D.9盏 【解答】解:设这个塔顶层有a盏灯, ∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍, ∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列, 又总共有灯381盏, ∴381==127a,解得a=3, 则这个塔顶层有3盏灯, 故选B. 4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A.90π B.63π C.42π D.36π 【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半, V=π•32×10﹣•π•32×6=63π, 故选:B. 5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是( ) A.﹣15 B.﹣9 C.1 D.9 【解答】解:x、y满足约束条件的可行域如图: z=2x+y 经过可行域的A时,目标函数取得最小值, 由解得A(﹣6,﹣3), 则z=2x+y 的最小值是:﹣15. 故选:A. 6.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( ) A.12种 B.18种 C.24种 D.36种 【解答】解:4项工作分成3组,可得:=6, 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成, 可得:6×=36种. 故选:D. 7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 【解答】解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩 →乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩) →乙看到了丙的成绩,知自己的成绩 →丁看到甲、丁中也为一优一良,丁知自己的成绩, 故选:D. 8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=( ) A.2 B.3 C.4 D.5 【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环, 第一次满足循环,S=﹣1,a=1,k=2; 满足条件,第二次满足循环,S=1,a=﹣1,k=3; 满足条件,第三次满足循环,S=﹣2,a=1,k=4; 满足条件,第四次满足循环,S=2,a=﹣1,k=5; 满足条件,第五次满足循环,S=﹣3,a=1,k=6; 满足条件,第六次满足循环,S=3,a=﹣1,k=7; 7≤6不成立,退出循环输出,S=3; 故选:B. 9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为( ) A.2 B. C. D. 【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0, 圆(x﹣2)2+y2=4的圆心(2,0),半径为:2, 双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2, 可得圆心到直线的距离为:=, 解得:,可得e2=4,即e=2. 故选:A. 10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( ) A. B. C. D. 【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点, 则AB1、BC1夹角为MN和NP夹角或其补角 (因异面直线所成角为(0,]), 可知MN=AB1=, NP=BC1=; 作BC中点Q,则△PQM为直角三角形; ∵PQ=1,MQ=AC, △ABC中,由余弦定理得 AC2=AB2+BC2﹣2AB•BC•cos∠ABC =4+1﹣2×2×1×(﹣) =7, ∴AC=, ∴MQ=; 在△MQP中,MP==; 在△PMN中,由余弦定理得 cos∠MNP===﹣; 又异面直线所成角的范围是(0,], ∴AB1与BC1所成角的余弦值为. 11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点,则f(x)的极小值为( ) A.﹣1 B.﹣2e﹣3 C.5e﹣3 D.1 【解答】解:函数f(x)=(x2+ax﹣1)ex﹣1, 可得f′(x)=(2x+a)ex﹣1+(x2+ax﹣1)ex﹣1, x=﹣2是函数f(x)=(x2+ax﹣1)ex﹣1的极值点, 可得:﹣4+a+(3﹣2a)=0. 解得a=﹣1. 可得f′(x)=(2x﹣1)ex﹣1+(x2﹣x﹣1)ex﹣1, =(x2+x﹣2)ex﹣1,函数的极值点为:x=﹣2,x=1, 当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数, x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1. 故选:A. 12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是( ) A.﹣2 B.﹣ C.﹣ D.﹣1 【解答】解:建立如图所示的坐标系,以BC中点为坐标原点, 则A(0,),B(﹣1,0),C(1,0), 设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y), 则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣] ∴当x=0,y=时,取得最小值2×(﹣)=﹣, 故选:B 三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96 . 【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100, 则DX=npq=np(1﹣p)=100×0.02×0.98=1.96. 故答案为:1.96. 14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 . 【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣, 令cosx=t且t∈[0,1], 则f(t)=﹣t2+t+=﹣(t﹣)2+1, 当t=时,f(t)max=1, 即f(x)的最大值为1, 故答案为:1 15.(5分)(2017•新课标Ⅱ)等差数列{an}的前n项和为Sn,a3=3,S4=10,则 = . 【解答】解:等差数列{an}的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10, 可得a2=2,数列的首项为1,公差为1, Sn=,=, 则 =2[1﹣++…+]=2(1﹣)=. 故答案为:. 16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= 6 . 【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点, 可知M的横坐标为:1,则M的纵坐标为:, |FN|=2|FM|=2=6. 故答案为:6. 三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2. (1)求cosB; (2)若a+c=6,△ABC面积为2,求b. 【解答】解:(1)sin(A+C)=8sin2, ∴sinB=4(1﹣cosB), ∵sin2B+cos2B=1, ∴16(1﹣cosB)2+cos2B=1, ∴(17cosB﹣15)(cosB﹣1)=0, ∴cosB=; (2)由(1)可知sinB=, ∵S△ABC=ac•sinB=2, ∴ac=, ∴b2=a2+c2﹣2accosB=a2+c2﹣2×× =a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4, ∴b=2. 18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图: (1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率; (2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关: 箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法 (3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附: P(K2≥k) 0.050 0.010 0.001 K 3.841 6.635 10.828 K2=. 【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”, 由P(A)=P(BC)=P(B)P(C), 则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P(B)的估计值0.62, 新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66, 故P(C)的估计值为, 则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092; ∴A发生的概率为0.4092; (2)2×2列联表: 箱产量<50kg 箱产量≥50kg 总计 旧养殖法 62 38 100 新养殖法 34 66 100 总计 96 104 200 则K2=≈15.705, 由15.705>6.635, ∴有99%的把握认为箱产量与养殖方法有关; (3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008), =5×10.47, =52.35(kg). 新养殖法箱产量的中位数的估计值52.35(kg) 方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积: (0.004+0.020+0.044)×5=0.034, 箱产量低于55kg的直方图面积为: (0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法产量的中位数的估计值为:50+≈52.35(kg), 新养殖法箱产量的中位数的估计值52.35(kg). 19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点. (1)证明:直线CE∥平面PAB; (2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值. 【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点, 所以EFAD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD, ∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB, ∴直线CE∥平面PAB; (2)解:四棱锥P﹣ABCD中, 侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD, ∠BAD=∠ABC=90°,E是PD的中点. 取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=, ∴∠PCO=60°,直线BM与底面ABCD所成角为45°, 可得:BN=MN,CN=MN,BC=1, 可得:1+BN2=BN2,BN=,MN=, 作NQ⊥AB于Q,连接MQ, 所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ= =, 二面角M﹣AB﹣D的余弦值为:=. 20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=. (1)求点P的轨迹方程; (2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F. 【解答】解:(1)设M(x0,y0),由题意可得N(x0,0), 设P(x,y),由点P满足=. 可得(x﹣x0,y)=(0,y0), 可得x﹣x0=0,y=y0, 即有x0=x,y0=, 代入椭圆方程+y2=1,可得+=1, 即有点P的轨迹方程为圆x2+y2=2; (2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π), •=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1, 即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1, 解得m=, 即有Q(﹣3,), 椭圆+y2=1的左焦点F(﹣1,0), 由kOQ=﹣, kPF=, 由kOQ•kPF=﹣1, 可得过点P且垂直于OQ的直线l过C的左焦点F. 21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0), 则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0, 因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0, 所以h(x)min=h(), 又因为h(1)=a﹣a﹣ln1=0, 所以=1,解得a=1; (2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx, 令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣, 令t′(x)=0,解得:x=, 所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增, 所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2, 且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正, 所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0, 所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣, 由x0<可知f(x0)<(x0﹣)max=﹣+=; 由f′()<0可知x0<<, 所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减, 所以f(x0)>f()=; 综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程]( 22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4. (1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程; (2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值. 【解答】解:(1)曲线C1的直角坐标方程为:x=4, 设P(x,y),M(4,y0),则,∴y0=, ∵|OM||OP|=16, ∴=16, 即(x2+y2)(1+)=16, ∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2, 两边开方得:x2+y2=4x, 整理得:(x﹣2)2+y2=4(x≠0), ∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0). (2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2, ∴曲线C2的圆心(2,0)到弦OA的距离d==, ∴△AOB的最大面积S=|OA|•(2+)=2+. [选修4-5:不等式选讲] 23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明: (1)(a+b)(a5+b5)≥4; (2)a+b≤2. 【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4, 当且仅当=,即a=b=1时取等号, (2)∵a3+b3=2, ∴(a+b)(a2﹣ab+b2)=2, ∴(a+b)[(a+b)2﹣3ab]=2, ∴(a+b)3﹣3ab(a+b)=2, ∴=ab, 由均值不等式可得:=ab≤()2, ∴(a+b)3﹣2≤, ∴(a+b)3≤2, ∴a+b≤2,当且仅当a=b=1时等号成立.查看更多