库仑定律高考总复习

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

库仑定律高考总复习

电场 一、库仑定律 ‎ 真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即:‎ ‎ 其中k为静电力常量, k=9.0×10 9 Nžm2/c2‎ ‎1.成立条件 ‎①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。‎ ‎2.同一条直线上的三个点电荷的计算问题 A B C ‎ ‎+4Q ‎-Q 例1. 在真空中同一条直线上的A、B两点固定有电荷量分别为+4Q和-Q的点电荷。①将另一个点电荷放在该直线上的哪个位置,可以使它在电场力作用下保持静止?②若要求这三个点电荷都只在电场力作用下保持静止,那么引入的这个点电荷应是正电荷还是负电荷?电荷量是多大?‎ 解:①先判定第三个点电荷所在的区间:只能在B点的右侧;再由,F、k、q相同时∴rA∶rB=2∶1,即C在AB延长线上,且AB=BC。‎ O A B mBg F N L d ‎②C处的点电荷肯定在电场力作用下平衡了;只要A、B两个点电荷中的一个处于平衡,另一个必然也平衡。由,F、k、QA相同,Q∝r2,∴QC∶QB=4∶1,而且必须是正电荷。所以C点处引入的点电荷QC= +4Q 例2. 已知如图,带电小球A、B的电荷分别为QA、QB,OA=OB,都用长L的丝线悬挂在O点。静止时A、B相距为d。为使平衡时AB间距离减为d/2,可采用以下哪些方法 A.将小球A、B的质量都增加到原来的2倍 B.将小球B的质量增加到原来的8倍 C.将小球A、B的电荷量都减小到原来的一半 D.将小球A、B的电荷量都减小到原来的一半,同时将小球B的质量增加到原来的2倍 解:由B的共点力平衡图知,而,可知,选BD A B ‎-Q ‎-2Q ‎3.与力学综合的问题。‎ 例3. 已知如图,光滑绝缘水平面上有两只完全相同的金属球A、B,带电量分别为-2Q与-Q。现在使它们以相同的初动能E0(对应的动量大小为p0)开始相向运动且刚好能发生接触。接触后两小球又各自反向运动。当它们刚好回到各自的出发点时的动能分别为E1和E2,动量大小分别为p1和p2。有下列说法:①E1=E2> E0,p1=p2> p0 ②E1=E2= E0,p1=p2= p0 ③接触点一定在两球初位置连线的中点右侧某点 ④‎ 两球必将同时返回各自的出发点。其中正确的是 A.②④ B.②③ C.①④ D.③④‎ 解:由牛顿定律的观点看,两球的加速度大小始终相同,相同时间内的位移大小一定相同,必然在连线中点相遇,又同时返回出发点。由动量观点看,系统动量守恒,两球的速度始终等值反向,也可得出结论:两球必将同时返回各自的出发点。且两球末动量大小和末动能一定相等。从能量观点看,两球接触后的电荷量都变为-1.5Q,在相同距离上的库仑斥力增大,返回过程中电场力做的正功大于接近过程中克服电场力做的功,由机械能定理,系统机械能必然增大,即末动能增大。选C。‎ A B C FAB FB FCB F 本题引出的问题是:两个相同的带电小球(可视为点电荷),相碰后放回原处,相互间的库仑力大小怎样变化?讨论如下:①等量同种电荷,F /=F;②等量异种电荷,F /=0F;④不等量异种电荷F />F、F /=F、F / UBC,选B 三、电荷引入电场 ‎1.将电荷引入电场 将电荷引入电场后,它一定受电场力Eq,且一定具有电势能φq。‎ ‎2.在电场中移动电荷电场力做的功 在电场中移动电荷电场力做的功W=qU,只与始末位置的电势差有关。在只有电场力做功的情况下,电场力做功的过程是电势能和动能相互转化的过程。W= -ΔE=ΔEK。‎ ‎⑴无论对正电荷还是负电荷,只要电场力做功,电势能就减小;克服电场力做功,电势能就增大。‎ ‎⑵正电荷在电势高处电势能大;负电荷在电势高处电势能小。‎ ‎⑶利用公式W=qU进行计算时,各量都取绝对值,功的正负由电荷的正负和移动的方向判定。‎ ‎⑷每道题都应该画出示意图,抓住电场线这个关键。(电场线能表示电场强度的大小和方向,能表示电势降低的方向。有了这个直观的示意图,可以很方便地判定点电荷在电场中受力、做功、电势能变化等情况。)‎ ‎+‎ ‎-‎ a o c 例7. 如图所示,在等量异种点电荷的电场中,将一个正的试探电荷由a 点沿直线移到o点,再沿直线由o点移到c点。在该过程中,检验电荷所受的电场力大小和方向如何改变?其电势能又如何改变?‎ 解:根据电场线和等势面的分布可知:电场力一直减小而方向不变;‎ 电势能先减小后不变。‎ ‎+‎ A B F v 例8. 如图所示,将一个电荷量为q = +3×10‎-10C的点电荷从电场中的A点移到B点过程,克服电场力做功6×10-9J。已知A点的电势为φA= - 4V,求B点的电势。‎ 解:先由W=qU,得AB间的电压为20V,再由已知分析:向右移动正电荷做负功,说明电场力向左,因此电场线方向向左,得出B点电势高。因此φB=16V。‎ 例9.α粒子从无穷远处以等于光速十分之一的速度正对着静止的金核射去(没有撞到金核上)。已知离点电荷Q距离为r处的电势的计算式为 φ=,那么α粒子的最大电势能是多大?由此估算金原子核的半径是多大?‎ A B C D 解:α粒子向金核靠近过程克服电场力做功,动能向电势能转化。设初动能为E,到不能再接近(两者速度相等时),可认为二者间的距离就是金核的半径。根据动量守恒定律和能量守恒定律,动能的损失,由于金核质量远大于α粒子质量,所以动能几乎全部转化为电势能。无穷远处的电势能为零,故最大电势能E=J,再由E=φq=,得r =1.2×10‎-14m,可见金核的半径不会大于1.2×10‎-14m。‎ 例10. 已知ΔABC处于匀强电场中。将一个带电量q= -2×10-6C的点电荷从A移到B的过程中,电场力做功W1= -1.2×10-5J;再将该点电荷从B移到C,电场力做功W2= 6×10-6J。已知A点的电势φA=5V,则B、C两点的电势分别为____V和____V。试在右图中画出通过A点的电场线。‎ 解:先由W=qU求出AB、BC间的电压分别为6V和3V,再根据负电荷A→B 电场力做负功,电势能增大,电势降低;B→C电场力做正功,电势能减小,电势升高,知φB= -1VφC=2V。沿匀强电场中任意一条直线电势都是均匀变化的,因此AB中点D的电势与C点电势相同,CD为等势面,过A做CD的垂线必为电场线,方向从高电势指向低电势,所以斜向左下方。‎ a b c P Q 例11. 如图所示,虚线a、b、c是电场中的三个等势面,相邻等势面间的电势差相同,实线为一个带正电的质点仅在电场力作用下,通过该区域的运动轨迹,P、Q是轨迹上的两点。下列说法中正确的是 ‎ ‎ A.三个等势面中,等势面a的电势最高 ‎ B.带电质点一定是从P点向Q点运动 ‎ C.带电质点通过P点时的加速度比通过Q点时小 ‎ D.带电质点通过P点时的动能比通过Q点时小 解:先画出电场线,再根据速度、合力和轨迹的关系,可以判定:质点在各点受的电场力方向是斜向左下方。由于是正电荷,所以电场线方向也沿电场线向左下方。答案仅有D 四、带电粒子在电场中的运动 ‎1.带电粒子在匀强电场中的加速 一般情况下带电粒子所受的电场力远大于重力,所以可以认为只有电场力做功。由动能定理W=qU=ΔEK,此式与电场是否匀强无关,与带电粒子的运动性质、轨迹形状也无关。‎ t φ U0‎ ‎-U0‎ o T/2 T 3T/2 2T 例12. 如图所示,两平行金属板竖直放置,左极板接地,中间有小孔。右极板电势随时间变化的规律如图所示。电子原来静止在左极板小孔处。(不计重力作用)下列说法中正确的是 A.从t=0时刻释放电子,电子将始终向右运动,直到打到右极板上 B.从t=0时刻释放电子,电子可能在两板间振动 C.从t=T/4时刻释放电子,电子可能在两板间振动,也可能打到右极板上 D.从t=3T/8时刻释放电子,电子必将打到左极板上 解:从t=0时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T/2,接着匀减速T/2,速度减小到零后,又开始向右匀加速T/2,接着匀减速T/2……直到打在右极板上。电子不可能向左运动;如果两板间距离不够大,电子也始终向右运动,直到打到右极板上。从t=T/4时刻释放电子,如果两板间距离足够大,电子将向右先匀加速T/4,接着匀减速T/4,速度减小到零后,改为向左先匀加速T/4,接着匀减速T/4。即在两板间振动;如果两板间距离不够大,则电子在第一次向右运动过程中就有可能打在右极板上。从t=3T/8时刻释放电子,如果两板间距离不够大,电子将在第一次向右运动过程中就打在右极板上;如果第一次向右运动没有打在右极板上,那就一定会在第一次向左运动过程中打在左极板上。选AC U L d v0‎ m,q y vt θ θ ‎2.带电粒子在匀强电场中的偏转 质量为m电荷量为q的带电粒子以平行于极板的初速度v0射入长L板间距离为d的平行板电容器间,两板间电压为U,求射出时的侧移、偏转角和动能增量。‎ ‎⑴侧移:‎ 千万不要死记公式,要清楚物理过程。根据不同的已知条件,结论改用不同的表达形式(已知初速度、初动能、初动量或加速电压等)。‎ ‎⑵偏角:,注意到,说明穿出时刻的末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。这一点和平抛运动的结论相同。‎ ‎⑶穿越电场过程的动能增量:ΔEK=Eqy (注意,一般来说不等于qU)‎ o 0.1 0.2 0.3 0.4 0.5 ‎ ‎3U0‎ u ‎0.06‎ L L L U0‎ y O t 例13. 如图所示,热电子由阴极飞出时的初速忽略不计,电子发射装置的加速电压为U0。电容器板长和板间距离均为L=‎10cm,下极板接地。电容器右端到荧光屏的距离也是L=‎10cm。在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如左图。(每个电子穿过平行板的时间极短,可以认为电压是不变的)求:①在t=0.06s时刻,电子打在荧光屏上的何处?②荧光屏上有电子打到的区间有多长?③屏上的亮点如何移动?‎ 解:①由图知t=0.06s时刻偏转电压为1.8U0,可求得y = 0.45L= 4.5cm,打在屏上的点距O点13.5cm。②电子的最大侧移为0.5L(偏转电压超过2.0U0,电子就打到极板上了),所以荧光屏上电子能打到的区间长为3L=30cm。③屏上的亮点由下而上匀速上升,间歇一段时间后又重复出现。‎ ‎3.带电物体在电场力和重力共同作用下的运动。‎ ‎-‎ ‎+‎ O C 当带电体的重力和电场力大小可以相比时,不能再将重力忽略不计。这时研究对象经常被称为“带电微粒”、“带电尘埃”、“带电小球”等等。这时的问题实际上变成一个力学问题,只是在考虑能量守恒的时候需要考虑到电势能的变化。‎ 例14. 已知如图,水平放置的平行金属板间有匀强电场。一根长l的绝缘细绳一端固定在O点,另一端系有质量为m并带有一定电荷的小球。小球原来静止在C点。当给小球一个水平冲量后,它可以在竖直面内绕O点做匀速圆周运动。若将两板间的电压增大为原来的3倍,求:要使小球从C点开始在竖直面内绕O点做圆周运动,至少要给小球多大的水平冲量?在这种情况下,在小球运动过程中细绳所受的最大拉力是多大?‎ 解:由已知,原来小球受到的电场力和重力大小相等,增大电压后电场力是重力的3倍。在C点,最小速度对应最小的向心力,这时细绳的拉力为零,合力为2mg,可求得速度为v=,因此给小球的最小冲量为I = m。在最高点D小球受到的拉力最大。从C到D对小球用动能定理:,在D点,解得F=12mg。‎ O A C B E θ θ 例15. 已知如图,匀强电场方向水平向右,场强E=1.5×106V/m,丝线长l=‎40cm,上端系于O点,下端系质量为m=1.0×10-‎4kg,带电量为q=+4.9×10‎-10C的小球,将小球从最低点A由静止释放,求:⑴小球摆到最高点时丝线与竖直方向的夹角多大?⑵摆动过程中小球的最大速度是多大?‎ 解:⑴这是个“歪摆”。由已知电场力Fe=0.75G摆动到平衡位置时丝线与竖直方向成37°‎ 角,因此最大摆角为74°。‎ ‎⑵小球通过平衡位置时速度最大。由动能定理:1.25mgž0.2l=mvB2/2,vB=1.4m/s。‎ 五、电容器 ‎1.电容器 两个彼此绝缘又相隔很近的导体都可以看成一个电容器。‎ ‎2.电容器的电容 电容是表示电容器容纳电荷本领的物理量,是由电容器本身的性质(导体大小、形状、相对位置及电介质)决定的。‎ ‎3.平行板电容器的电容 平行板电容器的电容的决定式是: ‎ ‎4.两种不同变化 电容器和电源连接如图,改变板间距离、改变正对面积或改变板间电解质材料,都会改变其电容,从而可能引起电容器两板间电场的变化。这里一定要分清两种常见的变化: ‎ K ‎⑴电键K保持闭合,则电容器两端的电压恒定(等于电源电动势),这种情况下带 ‎⑵充电后断开K,保持电容器带电量Q恒定,这种情况下 K M N 例11. 如图所示,在平行板电容器正中有一个带电微粒。K闭合时,该微粒恰好能保持静止。在①保持K闭合;②充电后将K断开;两种情况下,各用什么方法能使该带电微粒向上运动打到上极板?‎ A.上移上极板M B.上移下极板N ‎ C.左移上极板M D.把下极板N接地 ‎ 解:由上面的分析可知①选B,②选C。‎ A 例12. 计算机键盘上的每一个按键下面都有一个电容传感器。电容的计算公式是,其中常量ε=9.0×10‎-12Fžm-1,S表示两金属片的正对面积,d表示两金属片间的距离。当某一键被按下时,d发生改变,引起电容器的电容发生改变,从而给电子线路发出相应的信号。已知两金属片的正对面积为‎50mm2,键未被按下时,两金属片间的距离为‎0.60mm。只要电容变化达0.25pF,电子线路就能发出相应的信号。那么为使按键得到反应,至少需要按下多大距离?‎ 解:先求得未按下时的电容C1=0.75pF,再由得和C2=1.00pF,得Δd=‎ ‎0.15mm‎。‎
查看更多

相关文章

您可能关注的文档