- 2021-05-13 发布 |
- 37.5 KB |
- 37页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学五年高考荟萃 必看 空间向量在立体几何中的应用详解绝对知识无价
第八章 第三节 空间向量在立体几何中的应用 第三节 空间向量在立体几何中的应用 一、 填空题 1.若等边的边长为,平面内一点满足,则_________ 2.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。 【解析】设由可得故 【答案】(0,-1,0) 二、解答题 3.(本小题满分12分) 如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD (I) 求异面直线BF与DE所成的角的大小; (II) 证明平面AMD平面CDE; (III)求二面角A-CD-E的余弦值。 如图所示,建立空间直角坐标系, 点为坐标原点。设依题意得 (I) 所以异面直线与所成的角的大小为. (II)证明: , 37 (III) 又由题设,平面的一个法向量为 4.(本题满分15分)如图,平面平面, 是以为斜边的等腰直角三角形,分别为, ,的中点,,. (I)设是的中点,证明:平面; (II)证明:在内存在一点,使平面,并求点到,的距离. 证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O, 则,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面 6.(本小题满分12分) 如图,已知两个正方行ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点 。 (I)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正值弦; (II)用反证法证明:直线ME 与 BN 是两条异面直线。 37 设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图. 则M(1,0,2),N(0,1,0),可得=(-1,1,2). 又=(0,0,2)为平面DCEF的法向量, 可得cos(,)=· 所以MN与平面DCEF所成角的正弦值为 cos· ……6分 (Ⅱ)假设直线ME与BN共面, ……8分 则AB平面MBEN,且平面MBEN与平面DCEF交于EN 由已知,两正方形不共面,故AB平面DCEF。 又AB//CD,所以AB//平面DCEF。面EN为平面MBEN与平面DCEF的交线, 所以AB//EN。 又AB//CD//EF, 所以EN//EF,这与EN∩EF=E矛盾,故假设不成立。 所以ME与BN不共面,它们是异面直线. ……12分 7.(13分) 如图,四边形ABCD是边长为1的正方形,, ,且MD=NB=1,E为BC的中点 (1) 求异面直线NE与AM所成角的余弦值 (2) 在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由 17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标 依题意,得。 37 , 所以异面直线与所成角的余弦值为.A (2)假设在线段上存在点,使得平面. , 可设 又. 由平面,得即 故,此时. 经检验,当时,平面. 故线段上存在点,使得平面,此时. 8.(本小题满分12分) 如图,直三棱柱中,、分别为、的中点,平面 (I)证明: (II)设二面角为60°,求与平面所成的角的大小。 分析一:求与平面所成的线面角,只需求点到面的距离即可。 19.(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分) 如题(19)图,在四棱锥中,且;平面平面,;为的中点,.求: (Ⅰ)点到平面的距离; 37 (Ⅱ)二面角的大小. (Ⅰ)如答(19)图2,以S(O)为坐标原点,射线OD,OC分别为x轴,y轴正向,建立空间坐标系,设,因平面 即点A在xoz平面上,因此 又 因AD//BC,故BC⊥平面CSD,即BCS与平面 yOx重合,从而点A到平面BCS的距离为. (Ⅱ)易知C(0,2,0),D(,0,0). 因E为BS的中点. ΔBCS为直角三角形 , 知 设B(0,2, ),>0,则=2,故B(0,2,2),所以E(0,1,1) . 在CD上取点G,设G(),使GE⊥CD . 由故 ① 又点G在直线CD上,即,由=(),则有 ② 联立①、②,解得G= , 故=.又由AD⊥CD,所以二面角E-CD-A的平面角为向量与向量所成的角,记此角为 . 因为=,,所以 故所求的二面角的大小为 . 37 作于,连,则,为二面角的平面角,.不妨设,则.在中,由,易得. 设点到面的距离为,与平面所成的角为。利用,可求得,又可求得 即与平面所成的角为 分析二:作出与平面所成的角再行求解。如图可证得,所以面。由分析一易知:四边形为正方形,连,并设交点为,则,为在面内的射影。。以下略。 分析三:利用空间向量的方法求出面的法向量,则与平面所成的角即为与法向量的夹角的余角。具体解法详见高考试题参考答案。 总之在目前,立体几何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。命题人在这里一定会兼顾双方的利益。 9.(本小题共14分) 如图,四棱锥的底面是正方形,,点E在棱PB上. (Ⅰ)求证:平面; (Ⅱ)当且E为PB的中点时,求AE与 平面PDB所成的角的大小. 【解法2】如图,以D为原点建立空间直角坐标系, 设 则 37 , (Ⅰ)∵, ∴, ∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB, ∴平面. (Ⅱ)当且E为PB的中点时,, 设AC∩BD=O,连接OE, 由(Ⅰ)知AC⊥平面PDB于O, ∴∠AEO为AE与平面PDB所的角, ∵, ∴, ∴,即AE与平面PDB所成的角的大小为. 10.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分) 如题(18)图,在五面体ABCDEF中,AB//DC,∠BAD=,CD=AD=2.,四边形ABFE为平行四边形,FA⊥平面ABCD,FC=3,ED=,求: (Ⅰ)直线AB到平面EFCD的距离: (Ⅱ)二面角F-AD-E的平面角的正切值, 18.(本小题满分12分) 如图4,在正三棱柱中, D是的中点,点E在上,且。 (I) 证明平面平面 (II) 求直线和平面所成角的正弦值。 37 解 (I) 如图所示,由正三棱柱的性质知平面 又DE平面ABC,所以DEAA. 而DEAE。AAAE=A 所以DE平面AC CA,又DE平面ADE,故平面ADE平面AC CA。 解法2 如图所示,设O使AC的中点,以O为原点建立空间直角坐标系,不妨设 A A=,则AB=2,相关各点的坐标分别是 A(0,-1,0), B(,0,0), C(0,1,), D(,-,)。 易知=(,1,0), =(0,2,), =(,-,) 设平面ABC的法向量为n=(x,y,z),则有 解得x=-y, z=-, 故可取n=(1,-,)。 所以,(n·)===。 由此即知,直线AD和平面AB C所成角的正弦值为。 37 11.(本小题满分12分) 如图3,在正三棱柱ABC-中,AB=4, A=,点D是BC的中点,点E在AC上,且DEE (Ⅰ)证明:平面平面; (Ⅱ)求直线AD和平面所成角的正弦值。 解法2 如图所示,设O是AC的中点,以O为原点建立空间直角坐标系,则相关各 点的坐标分别是A(2,0,0,), .(2,0, ), D(-1, ), E(-1,0.0) 易知=(-3,,-),=(0,-,0),=(-3,,0) 设n=(x,y,z)是平面DE的一个法向量,则 37 解得 故可取n=(,0,-3,)于是 = 由此即知,直线AD和平面DE所成的角是正弦为 12.(本小题满分12分) 在四棱锥中,底面是矩形,平面,,. 以的中点为球心、为直径的球面交于点,交于点. (1)求证:平面⊥平面; (2)求直线与平面所成的角的大小; (3)求点到平面的距离. 方法二: (1)同方法一; (2)如图所示,建立空间直角坐标系,则,,, ,,;设平面的一个法向量,由可得:,令,则 。设所求角为,则, 所以所求角的大小为。 (3)由条件可得,.在中,,所以,则, ,所以所求距离等于点到平面距离的,设点到平面距离为则,所以所求距离为。 37 19(本小题满分12分) 如图,正方形所在平面与平面四边形所在平面互 相垂直,△是等腰直角三角形, (I)求证:; (II)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由; (III)求二面角的大小。 (Ⅰ)因为△ABE为等腰直角三角形,AB=AE, 所以AE⊥AB. 又因为平面ABEF⊥平面ABCD,AE平面ABEF, 平面ABEF∩平面ABCD=AB, 所以AE⊥平面ABCD. 所以AE⊥AD. 因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz. 设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) , E ( 0, 0, 1 ), C ( 1, 1, 0 ). 因为FA=FE, ∠AEF = 45°, 所以∠AFE= 90°. 从而,. 所以,,. ,. 所以EF⊥BE, EF⊥BC. 因为BE平面BCE,BC∩BE=B , 所以EF⊥平面BCE. (Ⅱ)存在点M,当M为AE中点时,PM∥平面BCE. M ( 0,0, ), P ( 1, ,0 ). 从而=, 于是·=·=0 所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内, 故PMM∥平面BCE. ………………………………8分 37 (Ⅲ)设平面BDF的一个法向量为,并设=(x,y,z). , 即 取y=1,则x=1,z=3。从而。 取平面ABD的一个法向量为。 。 故二面角F—BD—A的大小为arccos。……………………………………12分 14.(本题满分14分) 如图,在直三棱柱中,, ,求二面角的大小。 简答: 第一部分 五年高考荟萃 2009年高考题 2005—2008年高考题 解答题 1. A B C D E A1 B1 C1 D1 (2008全国Ⅱ19)(本小题满分12分) 如图,正四棱柱中,,点在上且. 37 (Ⅰ)证明:平面; (Ⅱ)求二面角的大小. 以为坐标原点,射线为轴的正半轴, A B C D E A1 B1 C1 D1 y x z 建立如图所示直角坐标系.依题设,. , . (Ⅰ)证明 因为,, 故,. 又, 所以平面. (Ⅱ)解 设向量是平面的法向量,则 ,. 故,. 令,则,,. 等于二面角的平面角, . 所以二面角的大小为. 2. (2008安徽)如图,在四棱锥中,底面四边长 为1的菱形,, , ,为 的中点,为的中点 (Ⅰ)证明:直线; (Ⅱ)求异面直线AB与MD所成角的大小; (Ⅲ)求点B到平面OCD的距离。 37 作于点P,如图,分别以AB,AP,AO所在直线为 轴建立坐标系 , (1)证明 设平面OCD的法向量为,则 即 取,解得 (2)解 设与所成的角为, , 与所成角的大小为. (3)解 设点B到平面OCD的距离为, 则为在向量上的投影的绝对值, 由 , 得.所以点B到平面OCD的距离为 3. (2008湖南17 )如图所示,四棱锥P-ABCD的底面 ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底面ABCD,PA=2. (Ⅰ)证明:平面PBE⊥平面PAB; (Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小. 如图所示,以A为原点,建立空间直角坐标系.则相关各点的 坐标分别是A(0,0,0),B(1,0,0), 37 P(0,0,2), (Ⅰ)证明 因为, 平面PAB的一个法向量是, 所以共线.从而BE⊥平面PAB. 又因为平面PBE, 故平面PBE⊥平面PAB. (Ⅱ)解 易知 设是平面PBE的一个法向量,则由得 所以 设是平面PAD的一个法向量,则由得所以故可取 于是, 故平面PAD和平面PBE所成二面角(锐角)的大小是 4. (2008福建18)如图,在四棱锥P-ABCD中,则面PAD⊥底面 ABCD,侧棱PA=PD=,底面ABCD为直角梯形, 其中BC∥ AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点. (Ⅰ)求证:PO⊥平面ABCD; (Ⅱ)求异面直线PD与CD所成角的大小; 37 (Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出 的值;若不存在,请说明理由. (Ⅰ)证明 在△PAD中PA=PD,O为AD中点,所以PO⊥AD, 又侧面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD, 所以PO⊥平面ABCD. (Ⅱ)解 以O为坐标原点,的方向分别为x轴、y轴、 z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得 A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1), 所以 所以异面直线PB与CD所成的角是arccos, (Ⅲ)解 假设存在点Q,使得它到平面PCD的距离为, 由(Ⅱ)知 设平面PCD的法向量为n=(x0,y0,z0). 则所以即, 取x0=1,得平面PCD的一个法向量为n=(1,1,1). 设由,得 解y=-或y=(舍去), 此时,所以存在点Q满足题意,此时. 5. (2007福建理•18)如图,正三棱柱ABC-A1B1C1的所有 棱长都为2,D为CC1中点。 (Ⅰ)求证:AB1⊥面A1BD; (Ⅱ)求二面角A-A1D-B的大小; (Ⅲ)求点C到平面A1BD的距离; (Ⅰ)证明 取中点,连结. 为正三角形,. 在正三棱柱中,平面平面, 平面. 37 取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,, ,,. ,, x z A B C D O F y ,. 平面. (Ⅱ)解 设平面的法向量为. ,. ,, 令得为平面的一个法向量. 由(Ⅰ)知平面, 为平面的法向量. ,. 二面角的大小为. (Ⅲ)解 由(Ⅱ),为平面法向量, . 点到平面的距离. 6.(2006广东卷)如图所示,AF、DE分别是⊙O、⊙O1的直 径.AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径, AB=AC=6,OE//AD. (Ⅰ)求二面角B—AD—F的大小; 37 (Ⅱ)求直线BD与EF所成的角. 解 (Ⅰ)∵AD与两圆所在的平面均垂直, ∴AD⊥AB, AD⊥AF,故∠BAD是二面角B—AD—F的平面角, 依题意可知,ABCD是正方形,所以∠BAD=450. 即二面角B—AD—F的大小为450. (Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,,0),B(,0,0),D(0,,8),E(0,0,8),F(0,,0) 所以, . 设异面直线BD与EF所成角为, 则 直线BD与EF所成的角为 7.(2005江西)如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:D1E⊥A1D; (2)当E为AB的中点时,求点E到面ACD1的距离; (3)AE等于何值时,二面角D1—EC—D的大小为. 以D为坐标原点,直线DA,DC,DD1分别为x, y, z轴,建 立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1), E(1,x,0),A(1,0,0),C(0,2,0) (1)证明 (2)解 因为E为AB的中点,则E(1,1,0), 从而, , 设平面ACD1的法向量为, 37 则 也即,得,从而,所以点E到平面AD1C的距离为 (3)解 设平面D1EC的法向量, ∴ 由 令b=1, ∴c=2,a=2-x, ∴ 依题意 ∴(不合,舍去), . ∴AE=时,二面角D1—EC—D的大小为. 第二部分 三年联考汇编 2009年联考题 解答题 1.(湖南省衡阳市八中2009届高三第三次月考试题)如图,P—ABCD是正四棱锥,是正方体,其中 (1)求证:; (2)求平面PAD与平面所成的锐二面角的余弦值; (3)求到平面PAD的距离 以为轴,为轴,为轴建立空间直角坐标系 (1)证明 设E是BD的中点,P—ABCD是正四棱锥,∴ 37 又, ∴ ∴∴ ∴ , 即。 (2)解 设平面PAD的法向量是, ∴ 取得,又平面的法向量是∴ , ∴。 M P D C B A (3)解 ∴到平面PAD的距离。 2. (陕西省西安铁一中2009届高三12月月考)如图,边长为2的等 边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=, M为BC的中点 (Ⅰ)证明:AM⊥PM ; (Ⅱ)求二面角P-AM-D的大小; z y x M P D C B Á (Ⅲ)求点D到平面AMP的距离。 (Ⅰ) 证明 以D点为原点,分别以直线DA、DC为x轴、y轴, 建立如图所示的空间直角坐标系, 依题意,可得 ∴ ∴ 即,∴AM⊥PM . (Ⅱ)解 设,且平面PAM,则 即 37 ∴ , 取,得 取,显然平面ABCD, ∴ 结合图形可知,二面角P-AM-D为45°; (Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则 = 即点D到平面PAM的距离为 3.(厦门市第二外国语学校2008—2009学年高三数学第四次月考)已知点H在正方体的对角线上,∠HDA=. A B C D x y z H (Ⅰ)求DH与所成角的大小; (Ⅱ)求DH与平面所成角的大小. 解:以为原点,为单位长建立空间直角坐标系. 设 则,.连结,. 设,由已知, 由 可得.解得, 所以.(Ⅰ)因为, 所以.即DH与所成的角为. (Ⅱ)平面的一个法向量是. 37 因为, 所以. 可得DH与平面所成的角为. A C D O B E y z x 4.(广东省北江中学2009届高三上学期12月月考)如图, 在四面体ABCD中,O、E分别是BD、BC的中点, (1)求证:平面BCD; (2)求异面直线AB与CD所成角的余弦值; (3)求点E到平面ACD的距离. ⑴ 证明 连结OC ,. 在中,由已知可得 而, A C D O B E y z x 即 ∴平面. (2)解 以O为原点,如图建立空间直角坐标系, 则 , ∴ 异面直线AB与CD所成角的余弦值为. ⑶解 设平面ACD的法向量为则 37 , ∴,令得是平面ACD的一个法向量. 又 ∴点E到平面ACD的距离 . A B C D E F 5.(广东省高明一中2009届高三上学期第四次月考)如图, 已知平面,平面,△为 等边三角形,,为的中点. (1) 求证:平面; (2) 求证:平面平面; (3) 求直线和平面所成角的正弦值. 设,建立如图所示的坐标系,则 . ∵为的中点,∴. (1) 证明 , ∵,平面,∴平面. (2) 证明 ∵, ∴,∴. ∴平面,又平面, ∴平面平面. (3) 解 设平面的法向量为,由可得: ,取. 又,设和平面所成的角为,则 . ∴直线和平面所成角的正弦值为. 37 6. (2009年广东省广州市高三年级调研测试)如图,已知 等腰直角三角形,其中∠=90º,. 点A、D分别是、的中点,现将△沿着边 折起到△位置,使⊥,连结、. (1)求证:⊥; (2)求二面角的平面角的余弦值. (1)证明 ∵点A、D分别是、的中点, ∴. ∴∠=90º. ∴. ∴ , ∵, ∴⊥平面. ∵平面, ∴. (2)解 建立如图所示的空间直角坐标系. 则(-1,0,0),(-2,1,0),(0,0,1). ∴=(-1,1,0),=(1,0,1), 设平面的法向量为=(x,y,z),则: , 令,得, ∴=(1,1,-1). 显然,是平面的一个法向量,=(). ∴cos<,>=. ∴二面角的平面角的余弦值是. 9月份更新 1. 连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB、CD的长度分别等于2 37 、4,M、N分别为AB、CD的中点,每条弦的两端都在球面上运动,有下列四个命题: ①弦AB、CD可能相交于点M ②弦AB、CD可能相交于点N ③MN的最大值为5 ④MN的最小值为l,其中真命题的个数为 A.1个 B.2个 C.3个 D.4个 答案 C 2.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为( )A. B. C. D. 答案 C 3.等边三角形与正方形有一公共边,二面角的余弦值为,分别是的中点,则所成角的余弦值等于 A C B D P 答案 . 4.如图,在三棱锥中,,,. (Ⅰ)求证:;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离. 解法一:(Ⅰ)取中点,连结.,.,. A C B E P ,平面.平面,. (Ⅱ),,.又,. 又,即,且,平面.取中点.连结. ,.是在平面内的射影,. A C B D P H 是二面角的平面角.在中,,,,.二面角的大小为. (Ⅲ)由(Ⅰ)知平面,平面平面.过作,垂足为. 平面平面,平面.的长即为点到平面 37 的距离. A C B P z x y H E 由(Ⅰ)知,又,且,平面.平面,. 在中,,, .. 点到平面的距离为. 解法二:(Ⅰ),,.又,. ,平面.平面,. (Ⅱ)如图,以为原点建立空间直角坐标系.则. 设.,,.取中点,连结. ,,,.是二面角的平面角. ,,, .二面角的大小为. (Ⅲ),在平面内的射影为正的中心,且的长为点到平面的距离. 如(Ⅱ)建立空间直角坐标系.,点的坐标为.. 点到平面的距离为. 5.如图,已知是棱长为的正方体,点在上,点在上,且. 37 (1)求证:四点共面;(4分);(2)若点在上,,点在上,,垂足为,求证:平面;(4分);(3)用表示截面和侧面所成的锐二面角的大小,求. 证明:(1)建立如图所示的坐标系,则,,, 所以,故,,共面.又它们有公共点,所以四点共面. (2)如图,设,则,而,由题设得, 得.因为,,有,又,,所以,,从而,.故平面. (3)设向量截面,于是,. 而,,得,,解得,,所以.又平面,所以和的夹角等于或(为锐角). 于是. 故. 2007—2008年联考题 1. (江西省鹰潭市2008届高三第一次模拟)已知斜三棱柱,,,在底面上的射影恰为的中点,又知. (Ⅰ)求证:平面; (Ⅱ)求到平面的距离; 37 (Ⅲ)求二面角的大小. (Ⅰ)证明 如图,取的中点,则,∵,∴, 又平面,以为轴建立空间坐标系, 则,,,,,, ,,由,知, 又,从而平面. (Ⅱ)解 由,得.设平面的法向量 为,,,, 设,则 ∴点到平面的距离. (Ⅲ)解 设面的法向量为,,, ∴ 设,则,故, 根据法向量的方向可知二面角的大小为. 2. (山西大学附中2008届二月月考)正三棱柱所有棱长都是,是棱的中点,是棱的中点,交于点 (1)求证:; (2)求二面角的大小(用反三角函数表示); (3)求点到平面的距离. (1)证明 建立如图所示, ∵ ∴ , 即AE⊥A1D, AE⊥BD , ∴AE⊥面A1BD (2)解 设面DA1B的法向量为 由 , ∴取 37 设面AA1B的法向量为 , 由图可知二面角D—BA1—A为锐角,∴它的大小为arcos . (3)解 ,平面A1BD的法向量取, 则B1到平面A1BD的距离d= . 3. (安徽省皖南八校2008届高三第一次联考)已知斜三棱柱 ,,, 在底面上的射影恰为的中点, 又知。 (I)求证:平面; (II)求到平面的距离; (III)求二面角的大小。 (I)证明 如图,取的中点,则,因为, 所以,又平面, 以为轴建立空间坐标系, 则,,, ,, ,, ,由,知, 又,从而平面; (II)解 由,得。 设平面的法向量为,,, 所以,设,则 37 所以点到平面的距离。 (III)解 再设平面的法向量为,,, 所以,设,则, 故,根据法向量的方向, 可知二面角的大小为。 4. ( 四川省成都市2008一诊) 如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°. (1) 求异面直线AF与BG所成的角的大小; (2) 求平面APB与平面CPD所成的锐二面角的大小. 解 由题意可知:AP、AD、AB两两垂直,可建立空间直角坐标系A-xyz 由平面几何知识知:AD=4, D (0, 4, 0), B (2 , 0 , 0 ), C ( 2, 2, 0 ), P (0, 0, 2), E (0, 0, 1), F (1 ,0, 1), G (1 ,1 ,1) (1)=(1,0,1),=(-1,1,1) ∴·=0, ∴AF与BG所成角为 . (2) 可证明AD⊥平面APB, ∴平面APB的法向量为n=(0,1,0) 设平面CPD的法向量为m=(1,y,z) 由 Þ 故m=(1,1,2) ∵cos查看更多