- 2021-05-13 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学数列大题专题训练
高考数学数列大题专题训练 命题:郭治击 审题:钟世美 参考答案 1.解:(Ⅰ)设构成等比数列,其中,则 ① ② ①×②并利用,得 (Ⅱ)由题意和(Ⅰ)中计算结果,知 另一方面,利用 得 所以 2.解:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。 (答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5) (Ⅱ)必要性:因为E数列A5是递增数列, 所以. 所以A5是首项为12,公差为1的等差数列. 所以a2000=12+(2000—1)×1=2011. 充分性,由于a2000—a1000≤1, a2000—a1000≤1 …… a2—a1≤1 所以a2000—a≤19999,即a2000≤a1+1999. 又因为a1=12,a2000=2011, 所以a2000=a1+1999. 是递增数列. 综上,结论得证。 (Ⅲ)令 因为 …… 所以 因为 所以为偶数, 所以要使为偶数, 即4整除. 当时,有 当的项满足, 当不能被4整除,此时不存在E数列An, 使得 3. 4.解(1)法一:,得, 设,则, (ⅰ)当时,是以为首项,为公差的等差数列, 即,∴ (ⅱ)当时,设,则, 令,得,, 知是等比数列,,又, ,. 法二:(ⅰ)当时,是以为首项,为公差的等差数列, 即,∴ (ⅱ)当时,,,, 猜想,下面用数学归纳法证明: ①当时,猜想显然成立; ②假设当时,,则 , 所以当时,猜想成立, 由①②知,,. (2)(ⅰ)当时, ,故时,命题成立; (ⅱ)当时,, , ,以上n个式子相加得 , .故当时,命题成立; 综上(ⅰ)(ⅱ)知命题成立. 5.解:(I)由已知可得,两式相减可得 即 又所以r=0时, 数列为:a,0,…,0,…; 当时,由已知(), 于是由可得, 成等比数列, , 综上,数列的通项公式为 (II)对于任意的,且成等差数列,证明如下: 当r=0时,由(I)知, 对于任意的,且成等差数列, 当,时, 若存在,使得成等差数列, 则, 由(I)知,的公比,于是 对于任意的,且 成等差数列, 综上,对于任意的,且成等差数列。 6.解析:(I)由知,,而,且,则为的一个零点,且在内有零点,因此至少有两个零点 解法1:,记,则。 当时,,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,; 所以, 当时,单调递减,而,则在内无零点; 当时,单调递增,则在内至多只有一个零点; 从而在内至多只有一个零点。综上所述,有且只有两个零点。 解法2:,记,则。 当时,,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点, 综上所述,有且只有两个零点。 (II)记的正零点为,即。 (1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明: ①当时,显然成立; ②假设当时,有成立,则当时,由 知,,因此,当时,成立。 故对任意的,成立。 (2)当时,由(1)知,在上单调递增。则,即。从而,即,由此猜测:。下面用数学归纳法证明: ①当时,显然成立; ②假设当时,有成立,则当时,由 知,,因此,当时,成立。 故对任意的,成立。 综上所述,存在常数,使得对于任意的,都有. 7.(1)设的公比为q,则 由成等比数列得 即 所以的通项公式为 (2)设的公比为q,则由 得 由,故方程(*)有两个不同的实根 由唯一,知方程(*)必有一根为0,代入(*)得 8.解:(I)设等差数列的公差为d,由已知条件可得 解得,故数列的通项公式为 (II)设数列,即, 所以,当时, = 所以 综上,数列 9.解:(I)由题设 即是公差为1的等差数列。 又所以 (II)由(I)得 , 10.解:(I)当时,不合题意; 当时,当且仅当时,符合题意; 当时,不合题意。 因此所以公式q=3,故 (II)因为 所以当n为偶数时, 当n为奇数时, 综上所述,查看更多