- 2021-05-13 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考文科导数考点汇总
高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x在x处有增量,那么函数y相应地有增量=f(x+)-f(x),比值叫做函数y=f(x)在x到x+之间的平均变化率,即=。如果当时,有极限,我们就说函数y=f(x)在点x处可导,并把这个极限叫做f(x)在点x处的导数,记作f’(x)或y’|。 即f(x)==。 说明: (1)函数f(x)在点x处可导,是指时,有极限。如果不存在极限,就说函数在点x处不可导,或说无导数。 (2)是自变量x在x处的改变量,时,而是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f(x)在点x处的导数的步骤(可由学生来归纳): (1)求函数的增量=f(x+)-f(x); (2)求平均变化率=; (3)取极限,得导数f’(x)=。 2.导数的几何意义 函数y=f(x)在点x处的导数的几何意义是曲线y=f(x)在点p(x,f(x))处的切线的斜率。也就是说,曲线y=f(x)在点p(x,f(x))处的切线的斜率是f’(x)。相应地,切线方程为y-y=f/(x)(x-x)。 3.几种常见函数的导数: ① ② ③; ④; ⑤⑥; ⑦; ⑧. 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即: 若C为常数,则.即常数与函数的积的导数等于常数乘以函数的导数: 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:‘=(v0)。 形如y=f的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y'|= y'| ·u'| 导数应用知识清单 单调区间:一般地,设函数在某个区间可导, 如果,则为增函数; 如果,则为减函数; 如果在某区间内恒有,则为常数; 2.极点与极值: 曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值: 一般地,在区间[a,b]上连续的函数f在[a,b]上必有最大值与最小值。 ①求函数ƒ在(a,b)内的极值; ②求函数ƒ在区间端点的值ƒ(a)、ƒ(b); ③将函数ƒ 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 在区间上的最大值是 2 2.已知函数处有极大值,则常数c= 6 ; 3.函数有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线在点处的切线方程是 2.若曲线在P点处的切线平行于直线,则P点的坐标为 (1,0) 3.若曲线的一条切线与直线垂直,则的方程为 4.求下列直线的方程: (1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线; 解:(1) 所以切线方程为 (2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为, 所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数的切线方程为y=3x+1 (Ⅰ)若函数处有极值,求的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值; (Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围 解:(1)由 过的切线方程为: ① ② 而过 故 ∵ ③ 由①②③得 a=2,b=-4,c=5 ∴ (2) 当 又在[-3,1]上最大值是13。 (3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。 依题意在[-2,1]上恒有≥0,即 ①当; ②当; ③当 综上所述,参数b的取值范围是 2.已知三次函数在和时取极值,且. (1) 求函数的表达式; (2) 求函数的单调区间和极值; 解:(1) , 由题意得,是的两个根,解得,. 再由可得.∴. (2) , 当时,;当时,; 当时,;当时,; 当时,.∴函数在区间上是增函数; 在区间上是减函数;在区间上是增函数. 函数的极大值是,极小值是. 3.设函数. (1)若的图象与直线相切,切点横坐标为2,且在处取极值,求实数 的值; (2)当b=1时,试证明:不论a取何实数,函数总有两个不同的极值点. 解:(1) 由题意,代入上式,解之得:a=1,b=1. (2)当b=1时, 因故方程有两个不同实根. 不妨设,由可判断的符号如下: 当>0;当<0;当>0 因此是极大值点,是极小值点.,当b=1时,不论a取何实数,函数总有两个不同的极值点。 题型四:利用导数研究函数的图象 1.如右图:是f(x)的导函数, 的图象如右图所示,则f(x)的图象只可能是( D ) (A) (B) (C) (D) 2.函数( A ) x y o 4 -4 2 4 -4 2 -2 -2 x y o 4 -4 2 4 -4 2 -2 -2 x y y 4 o -4 2 4 -4 2 -2 -2 6 6 6 6 y x -4 -2 o 4 2 2 4 3.方程 ( B ) A、0 B、1 C、2 D、3 题型五:利用单调性、极值、最值情况,求参数取值范围 1.设函数 (1)求函数的单调区间、极值. (2)若当时,恒有,试确定a的取值范围. 解:(1)=,令得 列表如下: x (-∞,a) a (a,3a) 3a (3a,+∞) - 0 + 0 - 极小 极大 ∴在(a,3a)上单调递增,在(-∞,a)和(3a,+∞)上单调递减 时,,时, (2)∵,∴对称轴, ∴在[a+1,a+2]上单调递减 ∴, 依题, 即 解得,又 ∴a的取值范围是 题型六:利用导数研究方程的根 1.已知平面向量=(,-1). =(,). (1)若存在不同时为零的实数k和t,使=+(t2-3),=-k+t,⊥, 试求函数关系式k=f(t) ; (2) 据(1)的结论,讨论关于t的方程f(t)-k=0的解的情况. 解:(1)∵⊥,∴=0 即[+(t2-3) ]·(-k+t)=0. 整理后得-k+[t-k(t2-3)] + (t2-3)·=0 ∵=0,=4,=1,∴上式化为-4k+t(t2-3)=0,即k=t(t2-3) (2)讨论方程t(t2-3)-k=0的解的情况,可以看作曲线f(t)= t(t2-3)与直线y=k的交点个数. 于是f′(t)= (t2-1)= (t+1)(t-1). 令f′(t)=0,解得t1=-1,t2=1.当t变化时,f′(t)、f(t)的变化情况如下表: t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f′(t) + 0 - 0 + F(t) ↗ 极大值 ↘ 极小值 ↗ 当t=-1时,f(t)有极大值,f(t)极大值=. 当t=1时,f(t)有极小值,f(t)极小值=- 函数f(t)=t(t2-3)的图象如图13-2-1所示, 可观察出: (1)当k>或k<-时,方程f(t)-k=0有且只有一解; (2)当k=或k=-时,方程f(t)-k=0有两解; (3) 当-<k<时,方程f(t)-k=0有三解. 题型七:导数与不等式的综合 1.设在上是单调函数.求实数的取值范围; 解:(1) 若在上是单调递减函数,则须这样的实数a不存在.故在上不可能是单调递减函数. 若在上是单调递增函数,则≤, 由于.从而0查看更多
相关文章
- 当前文档收益归属上传用户