- 2021-05-13 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018高考文科立体几何大题
立体几何综合训练 1、证明平行垂直 1.如图,AB是圆O的直径,PA⊥圆O所在的平面,C是圆O上的点. (1)求证:BC⊥平面PAC; (2)若Q为PA的中点,G为△AOC的重心,求证:QG∥平面PBC. 2.如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证: (Ⅰ)PA⊥底面ABCD; (Ⅱ)BE∥平面PAD; (Ⅲ)平面BEF⊥平面PCD. 3.如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB. (Ⅰ)求证:CE⊥平面PAD; (Ⅱ)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P﹣ABCD的体积. 4.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形.已知.M是PD的中点. (Ⅰ)证明PB∥平面MAC (Ⅱ)证明平面PAB⊥平面ABCD (Ⅲ)求四棱锥p﹣ABCD的体积. 2、求体积问题 5.如图,已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1. (Ⅰ)求证:AB∥平面PCD; (Ⅱ)求证:BC⊥平面PAC; (Ⅲ)若M是PC的中点,求三棱锥M﹣ACD的体积. 6.(2011•辽宁)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,OA=AB=PD. (Ⅰ)证明PQ⊥平面DCQ; (Ⅱ)求棱锥Q﹣ABCD的体积与棱锥P﹣DCQ的体积的比值. 7.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=. (Ⅰ)证明:PC⊥BD (Ⅱ)若E为PA的中点,求三棱锥P﹣BCE的体积. 8.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,. (Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD; (Ⅱ)求四棱锥P﹣ABCD的体积. 3、 三视图 9.已知某几何体的直观图与它的三视图,其中俯视图为正三角形,其它两个视图是矩形.已知D是这个几何体的棱A1C1上的中点. (Ⅰ)求出该几何体的体积; (Ⅱ)求证:直线BC1∥平面AB1D; (Ⅲ)求证:直线B1D⊥平面AA1D. 10.(2010•广东模拟)已知四棱锥P﹣ABCD的三视图如图所示,其中主视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.E是侧棱PC上的动点. (1)求证:BD⊥AE; (2)若E是PC的中点,且五点A,B,C,D,E在同一球面上,求该球的表面积. 11.(2010•深圳二模)一个三棱柱ABC﹣A1B1C1 直观图和三视图如图所示(主视图、俯视图都是矩形,左视图是直角三角形),设E、F分别为AA1和B1C1的中点. (Ⅰ)求几何体ABC﹣A1B1C1的体积; (Ⅱ)证明:A1F∥平面EBC1; (Ⅲ)证明:平面EBC⊥平面EB1C1. 4、折叠问题 12.如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中. (1)证明:DE∥平面BCF; (2)证明:CF⊥平面ABF; (3)当时,求三棱锥F﹣DEG的体积VF﹣DEG. 5、动点问题 13.(2011•北京)如图,在四面体PABC中,PC 求证:DE∥平面BCP; (Ⅱ)求证:四边形DEFG为矩形; (Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.查看更多