- 2021-05-13 发布 |
- 37.5 KB |
- 90页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
6年高考4年导数及其应用
第三章 导数及其应用 2.(2010辽宁文)(12)已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是 (A)[0,) (B) (C) (D) 答案 D 解析:选D.,, 即, 4.(2010全国卷2文)(7)若曲线在点处的切线方程是,则 (A) (B) (C) (D) 【解析】A:本题考查了导数的几何意思即求曲线上一点处的切线方程 ∵ ,∴ ,在切线,∴ 6.(2010江苏卷)14、将边长为1m正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记,则S的最小值是________。 【解析】 考查函数中的建模应用,等价转化思想。一题多解。 设剪成的小正三角形的边长为,则: (方法一)利用导数求函数最小值。 , , 当时,递减;当时,递增; 故当时,S的最小值是。 (方法二)利用函数的方法求最小值。 令,则: 故当时,S的最小值是。 7.(2010湖南文)21.(本小题满分13分) 已知函数其中a<0,且a≠-1. (Ⅰ)讨论函数的单调性; (Ⅱ)设函数(e是自然数的底数)。是否存在a,使在[a,-a]上为减函数?若存在,求a的取值范围;若不存在,请说明理由。 10.(2010陕西文)21、(本小题满分14分) 已知函数f(x)=,g(x)=alnx,aR。 (1) 若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程; (2) 设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式; (3) 对(2)中的(a),证明:当a(0,+)时, (a)1. 解 (1)f’(x)=,g’(x)=(x>0), 由已知得 =alnx, =, 解德a=,x=e2, 两条曲线交点的坐标为(e2,e) 切线的斜率为k=f’(e2)= , 切线的方程为y-e=(x- e2). (2)由条件知 Ⅰ 当a.>0时,令h (x)=0,解得x=, 所以当0 < x< 时 h (x)<0,h(x)在(0,)上递减; 当x>时,h (x)>0,h(x)在(0,)上递增。 所以x>是h(x)在(0, +∞ )上的唯一极致点,且是极小值点,从而也是h(x)的最小值点。 所以Φ (a)=h()= 2a-aln=2 Ⅱ当a ≤ 0时,h(x)=(1/2-2a) /2x>0,h(x)在(0,+∞)递增,无最小值。 故 h(x) 的最小值Φ (a)的解析式为2a(1-ln2a) (a>o) (3)由(2)知Φ (a)=2a(1-ln2a) 则 Φ 1(a )=-2ln2a,令Φ 1(a )=0 解得 a =1/2 当 00,所以Φ (a ) 在(0,1/2) 上递增 当 a>1/2 时, Φ 1(a )<0,所以Φ(a ) 在 (1/2, +∞)上递减。 所以Φ(a )在(0, +∞)处取得极大值Φ(1/2 )=1 因为Φ(a )在(0, +∞)上有且只有一个极致点,所以Φ(1/2)=1也是Φ(a)的最大值 所当a属于 (0, +∞)时,总有Φ(a) ≤ 1 11.(2010辽宁文)(21)(本小题满分12分) 已知函数. (Ⅰ)讨论函数的单调性; (Ⅱ)设,证明:对任意,. 解:(Ⅰ) f(x)的定义域为(0,+),. 当a≥0时,>0,故f(x)在(0,+)单调增加; 当a≤-1时,<0, 故f(x)在(0,+)单调减少; 当-1<a<0时,令=0,解得x=.当x∈(0, )时, >0; x∈(,+)时,<0, 故f(x)在(0, )单调增加,在(,+)单调减少. (Ⅱ)不妨假设x1≥x2.由于a≤-2,故f(x)在(0,+)单调减少. 所以等价于 ≥4x1-4x2, 即f(x2)+ 4x2≥f(x1)+ 4x1. 令g(x)=f(x)+4x,则 +4 =. 于是≤=≤0. 从而g(x)在(0,+)单调减少,故g(x1) ≤g(x2), 即 f(x1)+ 4x1≤f(x2)+ 4x2,故对任意x1,x2∈(0,+) , . 13.(2010全国卷2文)(21)(本小题满分12分) 已知函数f(x)=x-3ax+3x+1。 (Ⅰ)设a=2,求f(x)的单调期间; (Ⅱ)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围。 【解析】本题考查了导数在函数性质中的应用,主要考查了用导数研究函数的单调区间、极值及函数与方程的知识。 (1)求出函数的导数,由导数大于0,可求得增区间,由导数小于0,可求得减区间。 (2)求出函数的导数,在(2,3)内有极值,即为在(2,3)内有一个零点,即可根据,即可求出A的取值范围。 15.(2010安徽文)20.(本小题满分12分) 设函数,,求函数的单调区间与极值。 【命题意图】本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合应用数学知识解决问题的能力. 【解题指导】(1)对函数求导,对导函数用辅助角公式变形,利用导数等于0得极值点,通过列表的方法考查极值点的两侧导数的正负,判断区间的单调性,求极值. 【思维总结】对于函数解答题,一般情况下都是利用导数来研究单调性或极值,利用导数为0得可能的极值点,通过列表得每个区间导数的正负判断函数的单调性,进而得出极值点. 16.(2010重庆文)(19) (本小题满分12分), (Ⅰ)小问5分,(Ⅱ)小问7分.) 已知函数(其中常数a,b∈R),是奇函数. (Ⅰ)求的表达式; (Ⅱ)讨论的单调性,并求在区间[1,2]上的最大值和最小值. 17.(2010浙江文)(21)(本题满分15分)已知函数(a-b)0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围. 【解析】本小题主要考查曲线的切线方程、利用导数研究函数的单调性与极值、解不等式等基础知识,考查运算能力及分类讨论的思想方法.满分12分. (Ⅰ)解:当a=1时,f(x)=,f(2)=3;f’(x)=, f’(2)=6.所以曲线y=f(x)在点(2,f(2))处的切线方程为y-3=6(x-2),即y=6x-9. (Ⅱ)解:f’(x)=.令f’(x)=0,解得x=0或x=. 以下分两种情况讨论: (1) 若,当x变化时,f’(x),f(x)的变化情况如下表: X 0 f’(x) + 0 - f(x) 极大值 当等价于 解不等式组得-52,则.当x变化时,f’(x),f(x)的变化情况如下表: X 0 f’(x) + 0 - 0 + f(x) 极大值 极小值 当时,f(x)>0等价于即 解不等式组得或.因此20,使得,则称函数具有性质。 (1)设函数,其中为实数。 (i)求证:函数具有性质; (ii)求函数的单调区间。 (2)已知函数具有性质。给定设为实数, ,,且, 若||<||,求的取值范围。 【解析】 本小题主要考查函数的概念、性质、图象及导数等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力。满分16分。 (1)(i) ∵时,恒成立, ∴函数具有性质; (ii)(方法一)设,与的符号相同。 当时,,,故此时在区间上递增; 当时,对于,有,所以此时在区间上递增; 当时,图像开口向上,对称轴,而, 对于,总有,,故此时在区间上递增; (方法二)当时,对于, 所以,故此时在区间上递增; 当时,图像开口向上,对称轴,方程的两根为:,而 当时,,,故此时在区间 上递减;同理得:在区间上递增。 综上所述,当时,在区间上递增; 当时,在上递减;在上递增。 (2)(方法一)由题意,得: 又对任意的都有>0, 所以对任意的都有,在上递增。 又。 当时,,且, 综合以上讨论,得:所求的取值范围是(0,1)。 (方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。 ①当时,有, ,得,同理可得,所以由的单调性知、, 从而有||<||,符合题设。 ②当时,, ,于是由及的单调性知,所以||≥||,与题设不符。 ③当时,同理可得,进而得||≥||,与题设不符。 因此综合①、②、③得所求的的取值范围是(0,1)。 2009年高考题 一、选择题 1.(2009年广东卷文)函数的单调递增区间是 ( ) A. B.(0,3) C.(1,4) D. 答案 D 解析 ,令,解得,故选D 2.(2009全国卷Ⅰ理) 已知直线y=x+1与曲线相切,则α的值为( ) A.1 B. 2 C.-1 D.-2 答案 B 解:设切点,则,又 .故答案 选B 3.(2009安徽卷理)已知函数在R上满足,则曲线 在点处的切线方程是 ( ) A. B. C. D. 答案 A 解析 由得几何, 即,∴∴,∴切线方程,即选A 4.(2009江西卷文)若存在过点的直线与曲线和都相切,则等于 ( ) A.或 B.或 C.或 D.或 答案 A 解析 设过的直线与相切于点,所以切线方程为 即,又在切线上,则或, 当时,由与相切可得, 当时,由与相切可得,所以选. 5.(2009江西卷理)设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为 ( ) A. B. C. D. 答案 A 解析 由已知,而,所以故选A 力。 6.(2009全国卷Ⅱ理)曲线在点处的切线方程为 ( ) A. B. C. D. 答案 B 解 , 故切线方程为,即 故选B. 7.(2009湖南卷文)若函数的导函数在区间上是增函数, 则函数在区间上的图象可能是 ( ) y a b a b a o x o x y b a o x y o x y b A . B. C. D. 解析 因为函数的导函数在区间上是增函数,即在区间上各点处的斜率是递增的,由图易知选A. 注意C中为常数噢. 8.(2009辽宁卷理)若满足2x+=5, 满足2x+2(x-1)=5, += ( ) A. B.3 C. D.4 答案 C 解析 由题意 ① ② 所以, 即2 令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1) ∴5-2t=2log2(t-1)与②式比较得t=x2 于是2x1=7-2x2 9.(2009天津卷理)设函数则 ( ) A在区间内均有零点。 B在区间内均无零点。 C在区间内有零点,在区间内无零点。 D在区间内无零点,在区间内有零点。 【考点定位】本小考查导数的应用,基础题。 解析 由题得,令得;令得;得,故知函数在区间上为减函数,在区间 为增函数,在点处有极小值;又 ,故选择D。 二、填空题 10.(2009辽宁卷文)若函数在处取极值,则 解析 f’(x)= f’(1)==0 Þ a=3 答案 3 11.若曲线存在垂直于轴的切线,则实数的取值范围是 . 解析 解析 由题意该函数的定义域,由。因为存在垂直于轴的切线,故此时斜率为,问题转化为范围内导函数存在零点。 解法1 (图像法)再将之转化为与存在交点。当不符合题意,当时,如图1,数形结合可得显然没有交点,当如图2,此时正好有一个交点,故有应填 或是。 解法2 (分离变量法)上述也可等价于方程在内有解,显然可得 12.(2009江苏卷)函数的单调减区间为 . 解析 考查利用导数判断函数的单调性。 , 由得单调减区间为。亦可填写闭区间或半开半闭区间。 13.(2009江苏卷)在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 . 解析 考查导数的几何意义和计算能力。 ,又点P在第二象限内,点P的坐标为(-2,15) 答案 : 【命题立意】:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答. 14.(2009福建卷理)若曲线存在垂直于轴的切线,则实数取值范围是_____________. 答案 解析 由题意可知,又因为存在垂直于轴的切线, 所以。 15.(2009陕西卷理)设曲线在点(1,1)处的切线与x轴的交点的横坐标为,令,则的值为 . 答案 -2 16.(2009四川卷文)设是已知平面上所有向量的集合,对于映射,记的象为。若映射满足:对所有及任意实数都有,则称为平面上的线性变换。现有下列命题: ①设是平面上的线性变换,,则 ②若是平面上的单位向量,对,则是平面上的线性变换; ③对,则是平面上的线性变换; ④设是平面上的线性变换,,则对任意实数均有。 其中的真命题是 (写出所有真命题的编号) 答案 ①③④ 解析 ①:令,则故①是真命题 同理,④:令,则故④是真命题 ③:∵,则有 是线性变换,故③是真命题 ②:由,则有 ∵是单位向量,≠0,故②是假命题 【备考提示】本小题主要考查函数,对应及高等数学线性变换的相关知识,试题立意新颖, 突出创新能力和数学阅读能力,具有选拔性质。 17.(2009宁夏海南卷文)曲线在点(0,1)处的切线方程为 。 答案 解析 ,斜率k==3,所以,y-1=3x,即 三、解答题 18.(2009全国卷Ⅰ理)本小题满分12分。(注意:在试题卷上作答无效) 设函数在两个极值点,且 (I)求满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点的区域; (II)证明: 分析(I)这一问主要考查了二次函数根的分布及线性规划作可行域的能力。 大部分考生有思路并能够得分。由题意知方程有两个根 则有 故有 右图中阴影部分即是 满足这些条件的点的区域。 (II)这一问考生不易得分,有一定的区分度。主要原因是含字母较多,不易找到突破口。此题主要利用消元的手段,消去目标中的,(如果消会较繁琐)再利用的范围,并借助(I)中的约束条件得进而求解,有较强的技巧性。 解析 由题意有............① 又.....................② 消去可得. 又,且 19.(2009浙江文)(本题满分15分)已知函数 . (I)若函数的图象过原点,且在原点处的切线斜率是,求的值; (II)若函数在区间上不单调,求的取值范围. 解析 (Ⅰ)由题意得 又 ,解得,或 (Ⅱ)函数在区间不单调,等价于 导函数在既能取到大于0的实数,又能取到小于0的实数 即函数在上存在零点,根据零点存在定理,有 , 即: 整理得:,解得 20.(2009北京文)(本小题共14分) 设函数. (Ⅰ)若曲线在点处与直线相切,求的值; (Ⅱ)求函数的单调区间与极值点. 解析 本题主要考查利用导数研究函数的单调性和极值、 解不等式等基础知识,考查综合分析和解决问题的能力. (Ⅰ), ∵曲线在点处与直线相切, ∴ (Ⅱ)∵, 当时,,函数在上单调递增, 此时函数没有极值点. 当时,由, 当时,,函数单调递增, 当时,,函数单调递减, 当时,,函数单调递增, ∴此时是的极大值点,是的极小值点. 21.(2009北京理)(本小题共13分) 设函数 (Ⅰ)求曲线在点处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)若函数在区间内单调递增,求的取值范围. 解析 本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查 综合分析和解决问题的能力. (Ⅰ), 曲线在点处的切线方程为. (Ⅱ)由,得, 若,则当时,,函数单调递减, 当时,,函数单调递增, 若,则当时,,函数单调递增, 当时,,函数单调递减, (Ⅲ)由(Ⅱ)知,若,则当且仅当, 即时,函数内单调递增, 若,则当且仅当, 即时,函数内单调递增, 综上可知,函数内单调递增时,的取值范围是. 22.(2009山东卷文)(本小题满分12分) 已知函数,其中 (1)当满足什么条件时,取得极值? (2)已知,且在区间上单调递增,试用表示出的取值范围. 解: (1)由已知得,令,得, 要取得极值,方程必须有解, 所以△,即, 此时方程的根为 ,, 所以 当时, x (-∞,x1) x 1 (x1,x2) x2 (x2,+∞) f’(x) + 0 - 0 + f (x) 增函数 极大值 减函数 极小值 增函数 所以在x 1, x2处分别取得极大值和极小值. 当时, x (-∞,x2) x 2 (x2,x1) x1 (x1,+∞) f’(x) - 0 + 0 - f (x) 减函数 极小值 增函数 极大值 减函数 所以在x 1, x2处分别取得极大值和极小值. 综上,当满足时, 取得极值. (2)要使在区间上单调递增,需使在上恒成立. 即恒成立, 所以 设,, 令得或(舍去), 当时,,当时,单调增函数; 当时,单调减函数, 所以当时,取得最大,最大值为. 所以 当时,,此时在区间恒成立,所以在区间上单调递增,当时最大,最大值为,所以 综上,当时, ; 当时, 【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题. 22.设函数,其中常数a>1 (Ⅰ)讨论f(x)的单调性; (Ⅱ)若当x≥0时,f(x)>0恒成立,求a的取值范围。 解析 本题考查导数与函数的综合运用能力,涉及利用导数讨论函数的单调性,第一问关键是通过分析导函数,从而确定函数的单调性,第二问是利用导数及函数的最值,由恒成立条件得出不等式条件从而求出的范围。 解析 (I) 由知,当时,,故在区间是增函数; 当时,,故在区间是减函数; 当时,,故在区间是增函数。 综上,当时,在区间和是增函数,在区间是减函数。 (II)由(I)知,当时,在或处取得最小值。 由假设知 即 解得 11时, 当x变化时,与的变化情况如下表: x + - + 单调递增 单调递减 单调递增 由此得,函数的单调增区间为和,单调减区间为。 ②当时,此时有恒成立,且仅在处,故函数的单调增区间为R ③当时,同理可得,函数的单调增区间为和,单调减区间为 综上: 当时,函数的单调增区间为和,单调减区间为; 当时,函数的单调增区间为R; 当时,函数的单调增区间为和,单调减区间为. (Ⅱ)由得令得 由(1)得增区间为和,单调减区间为,所以函数在处取得极值,故M()N()。 观察的图象,有如下现象: ①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线在点P处切线的斜率之差Kmp-的值由正连续变为负。 ②线段MP与曲线是否有异于H,P的公共点与Kmp-的m正负有着密切的关联; ③Kmp-=0对应的位置可能是临界点,故推测:满足Kmp-的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线在点处的切线斜率; 线段MP的斜率Kmp 当Kmp-=0时,解得 直线MP的方程为 令 当时,在上只有一个零点,可判断函数在 上单调递增,在上单调递减,又,所以在上没有零点,即线段MP与曲线没有异于M,P的公共点。 当时,. 所以存在使得 即当MP与曲线有异于M,P的公共点 综上,t的最小值为2. (2)类似(1)于中的观察,可得m的取值范围为 解法二: (1)同解法一. (2)由得,令,得 由(1)得的单调增区间为和,单调减区间为,所以函数在处取得极值。故M().N() (Ⅰ) 直线MP的方程为 由 得 线段MP与曲线有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数 上有零点. 因为函数为三次函数,所以至多有三个零点,两个极值点. 又.因此, 在上有零点等价于在内恰有一个极大值点和一个极小值点,即内有两不相等的实数根. 等价于 即 又因为,所以m 的取值范围为(2,3) 从而满足题设条件的r的最小值为2. 36.(2009辽宁卷文)(本小题满分12分) 设,且曲线y=f(x)在x=1处的切线与x轴平行。 (2)求a的值,并讨论f(x)的单调性; (1)证明:当 解析 (Ⅰ).有条件知, ,故. ………2分 于是. 故当时,<0; 当时,>0. 从而在,单调减少,在单调增加. ………6分 (Ⅱ)由(Ⅰ)知在单调增加,故在的最大值为, 最小值为. 从而对任意,,有. ………10分 而当时,. 从而 ………12分 37.(2009辽宁卷理)(本小题满分12分) 已知函数f(x)=x-ax+(a-1),。 (1)讨论函数的单调性; (2)证明:若,则对任意x,x,xx,有。 解析 (1)的定义域为。 2分 (i)若即,则 故在单调增加。 (ii)若,而,故,则当时,; 当及时, 故在单调减少,在单调增加。 (iii)若,即,同理可得在单调减少,在单调增加. (II)考虑函数 则 由于11,证明对任意的c,都有M>2: (Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值。 本小题主要考察函数、函数的导数和不等式等基础知识,考察综合运用数学知识进行推理 论证的能力和份额类讨论的思想(满分14分) (I)解析 ,由在处有极值 可得 解得或 若,则,此时没有极值; 若,则 当变化时,,的变化情况如下表: 1 0 + 0 极小值 极大值 当时,有极大值,故,即为所求。 (Ⅱ)证法1: 当时,函数的对称轴位于区间之外。 在上的最值在两端点处取得 故应是和中较大的一个 即 证法2(反证法):因为,所以函数的对称轴位于区间之外, 在上的最值在两端点处取得。 故应是和中较大的一个 假设,则 将上述两式相加得: ,导致矛盾, (Ⅲ)解法1: (1)当时,由(Ⅱ)可知; (2)当时,函数)的对称轴位于区间内, 此时 由有 ①若则, 于是 ②若,则 于是 综上,对任意的、都有 而当时,在区间上的最大值 故对任意的、恒成立的的最大值为。 解法2: (1)当时,由(Ⅱ)可知; (2)当时,函数的对称轴位于区间内, 此时 ,即 下同解法1 43.(2009宁夏海南卷文)(本小题满分12分) 已知函数. (1) 设,求函数的极值; (2) 若,且当时,12a恒成立,试确定的取值范围. 请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑。 (21)解析 (Ⅰ)当a=1时,对函数求导数,得 令 列表讨论的变化情况: (-1,3) 3 + 0 — 0 + 极大值6 极小值-26 所以,的极大值是,极小值是 (Ⅱ)的图像是一条开口向上的抛物线,关于x=a对称. 若上是增函数,从而 上的最小值是最大值是 由于是有 由 所以 若a>1,则不恒成立. 所以使恒成立的a的取值范围是 44.(2009天津卷理)(本小题满分12分) 已知函数其中 (1)当时,求曲线处的切线的斜率; (2)当时,求函数的单调区间与极值。 本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。满分12分。 (I)解析 (II) 以下分两种情况讨论。 (1)>,则<.当变化时,的变化情况如下表: + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗ (2)<,则>,当变化时,的变化情况如下表: + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗ 45.(2009四川卷理)(本小题满分12分) 已知函数。 (I)求函数的定义域,并判断的单调性; (II)若 (III)当(为自然对数的底数)时,设,若函数的极值存在,求实数的取值范围以及函数的极值。 本小题主要考查函数、数列的极限、导数应用等基础知识、考查分类整合思想、推理和运算能力。 解析 (Ⅰ)由题意知 当 当 当….(4分) (Ⅱ)因为 由函数定义域知>0,因为n是正整数,故00, 10查看更多