- 2021-05-13 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考的味道——考前必刷题之数学理全国I卷9不等式推理与证明
(十三)不等式 1.2019若x,y满足约束条件 ,则z=x+y的最大值为________. 2. 2019设,满足约束条件,则的最小值是( ) A. B. C. D. 1. 2.A 【解析】 (十八)推理与证明 1. 2019有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 2.2019甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩。老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩。看后甲对大家说:我还是不知道我的成绩。根据以上信息,则( ) A.乙可以知道四人的成绩 B.丁可以知道四人的成绩 C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩 1.1和3 2.D 【解析】 故选D。 【名师点睛】合情推理主要包括归纳推理和类比推理。数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向。合情推理仅是“合乎情理”的推理,它得到的结论不一定正确。而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下)。 考纲原文 (十三)不等式 1.不等关系 了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. 2.一元二次不等式 (1)会从实际情境中抽象出一元二次不等式模型. (2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. (3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. 3.二元一次不等式组与简单线性规划问题 (1)会从实际情境中抽象出二元一次不等式组. (2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. (3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 4.基本不等式: (1)了解基本不等式的证明过程. (2)会用基本不等式解决简单的最大(小)值问题. (十八)推理与证明 1.合情推理与演绎推理 (1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用. (2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理. (3)了解合情推理和演绎推理之间的联系和差异.学*科网 2.直接证明与间接证明 (1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点. (2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 3.数学归纳法 了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 1.从考查题型来看,涉及不等式的题目主要在选择题、填空题中考查二元一次不等式(组)表示的平面区域问题以及简单的线性规划问题,利用基本不等式求解最小(大)值问题,以及基本不等式的实际应用等.而对于推理与证明的考查,选择题、填空题中重点在于考查推理的应用以及学生联想、归纳、假设、证明的数学应用能力,解答题中重点考查数学归纳法.学*科网 2. 从考查内容来看,线性规划重点考查不等式(组)表示的可行域的确定,目标函数的最大(小)值的计算等,重点体现数形结合的特点.推理与证明则主要考查归纳、类比推理,以及综合函数、导数、不等式、数列等知识考查直接证明和间接证明. 3.从考查热点来看,通过线性规划求最值、推理是高考命题的热点,考查了学生的数形结合思想以及联想、归纳、假设、证明的能力.查看更多